

Welcome to the DDI Considerations with Long-Acting PrEP Innovations webinar

We will begin shortly...

Your audio has been muted upon entry.

Please utilize the Q&A **Function to submit any** questions you may have

For technical difficulties, please contact Keegan Girouard at 814-404-5205

These slides are being provided in response to your request for information and not for further distribution.

Some information contained in these slides may be outside the approved US Prescribing Information. This information is not intended to offer recommendations for administration of this product in a manner inconsistent with the US Prescribing Information.

In order for ViiV Healthcare to monitor the safety of our products, we encourage healthcare professionals to report adverse events or suspected overdoses to the company at 1-888-825-5249.

Please consult the accompanying US Prescribing Information.

DDI Considerations with Long-Acting PrEP Innovations Webinar

Marisa Brizzi, PharmD, **BCPS, AAHIVP**

HIV/Pain Stewardship Clinical Pharmacist **UC** Health

Josh Havens, PharmD Associate Clinical Professor, University of Nebraska Medical Center

HIV Clinical Pharmacist, Specialty Care Center

Caitlin Prather, PharmD, **BCACP, AAHIVP**

Clinical Pharmacy Specialist Inova Health System

Agenda September 23 • 7:00 - 8:15 PM ET

2 3

Relevance of DDIs

DDIs & LAI PrEP

DDIs & Special Populations

• Please use the Q&A function to submit comments and questions throughout the Webinar

Relevance of DDIs: Back to the Basics

Caitlin Prather, PharmD, BCACP, AAHIVP

Clinical Pharmacy Specialist Inova Health System

What is a drug-drug interaction (DDI)?

A drug-drug interaction occurs when the effect of one drug is altered by the presence of another, potentially leading to reduced efficacy or increased toxicity

DDIs: Why do we care?

1

Enhance Patient Safety

- DDIs can lead to adverse drug reactions (ADRs), reduced therapeutic efficacy or toxic effects
- Monitoring DDIs is crucial to prevent medication-related harm, especially in patients with polypharmacy or chronic conditions¹

2

Improve Clinical Outcomes

- Proactively identifying DDIs supports optimal treatment regimens and prevents complications such as hospitalizations due to medication-related admissions
- Tailored drug selection and dosing minimize unintended consequences²

3

Reduce Healthcare Costs

- ADRs associated with DDIs are significant contributors to avoidable healthcare expenses
- DDIs contribute to 20% of adverse drug-related hospitalizations annually in the U.S with costs >\$35 billion³

4

Leverage Technology for Prevention

- EHR and clinical decision support systems are vital tools for identifying high-risk DDIs
- Integration of DDI alerts in prescribing workflows ensures real-time risk mitigation⁴

Pharmacokinetics determine dosing, efficacy, and safety of a given drug

Absorption

- / The process of a drug entering the bloodstream
- / Influenced by factors like bioavailability, route of administration, and P-gp activity

Distribution

- / The movement of a drug throughout the body
- / Affected by protein binding (e.g. albumin), tissue permeability, and blood flow

Metabolism

- / The chemical modifications of drugs to aid elimination
- / Phase 1 (CYP enzymes) and Phase 2 (UGT and others) pathways play key roles

Excretion

- / The removal of drugs and their metabolites from the body
- / Primarily via the kidneys (urine) and live (bile/feces)

Metabolic pathways: Overview of drug metabolism

Phase 1 Metabolism (Functionalization Reactions)

- / Involves enzymes called CYP P450 which add or expose functional groups to make drugs more polar.
- About 75% of drugs are metabolized this way, with CYP3A4 being responsible for around 50% of these reactions.

Phase 2 Metabolism (Conjugation Reactions)

- / Involves enzymes called UGT which conjugate drugs with molecules like glucuronic acid to increase solubility for excretion.
- / About 35% of drugs undergo this type of metabolism.

Transport Proteins

- P-gp is a key transporter that pumps drugs out of cells, affecting their absorption and bioavailability.
- / Many drugs are substrates for both CYP enzymes and P-gp, leading to complex drug-drug interactions

Substrates, inhibitors, and inducers relative to DDIs

Substrates

- / Drugs that are metabolized by specific enzymes or transporters (e.g., CYP450, P-gp).
- / Example: Simvastatin is a substrate of CYP3A4.

Inhibitors

- / Drugs that block the activity of enzymes or transporters.
- / Can increase the concentration of a substrate, leading to toxicity.
- / Example: Ketoconazole inhibits CYP3A4, increasing levels of co-administered substrates.

Inducers

- / Drugs that enhance the activity or expression of enzymes or transporters.
- / Can decrease the concentration of a substrate, reducing efficacy.
- / Example: Rifampin induces CYP3A4, lowering levels of co-administered substrates.

Understanding these roles is critical for predicting and managing drug-drug interactions to optimize therapeutic outcomes.

Risk factors for polypharmacy

Patient-related

- / Advanced age
- / Cognitive impairment
- / Developmental disability
- / Frailty
- / Lack of a primary care physician
- / Mental health issues
- / Severe chronic medical conditions
- / Receiving care from several doctors
- / Residency in a long-term care facility

System-related

- / Inadequate transition of care
- / Poor medical recordkeeping
- / Prescription of medications in order to meet disease-specific quality metrics
- / Use of automated refill systems

The "AVOID Me Mistakes" mnemonic for obtaining a medical history

	"AVOID ME"	
Α	Allergies	Identification of medication that should not be prescribed for any reason
V	Vitamins	Including natural products and/or herbs
0	Old and new medications	Including prescriptions and OTC medications
ı	Interactions	Initial assessment of potential interactions
D	Dependence	Consider the need for a behavioral contract in the case of either drug dependence or adherence to a therapeutic regimen
ME	MEndel	Family history of beneficial or negative outcomes with medications

Clinical decision support (CDS) systems and DDIs

Key questions	Recommendations		
What process should be used to develop and maintain a standard	Establish a national expert panel to create and update a clinically relevant DDI set using systematic evidence, risk grading, and community feedback		
set of DDIs?	Ensure regular updates and oversight by a recognized organization		
What information should be included in a knowledgebase of standard DDIs?	Each DDI should include: • Severity, clinical impact, frequency, and modifying factors		
Standard DDIS:	Mechanism, recommended actions (with strength), and evidence (quality-rated)		
Can/should a list of contraindicated drug pairs be established?	 Classifying an interaction as "contraindicated" should occur infrequently and should be reserved for drug pairs where coadministration should not be permitted under any circumstances 		
How can DDI alerts be more intelligently filtered?	Convene a committee to review overrides, suppress low-value alerts, and refine presentation formats		
	 Implement user feedback and carefully evaluate modifications to ensure patient safety 		

CDS, clinical decision support

Tilson H et al Am J Health Syst Pharm 2016, 73: 576-85.

14

Limitations of EHRs and monitoring DDIs

/ Incomplete or inaccurate patient data

/ EHRs rely on accurate input from healthcare providers and patients. Missing or outdated information about medications, allergies, or health conditions may lead to ineffective DDI alerts¹

/ Alert fatigue among healthcare providers

/ Excessive or non-specific alerts within EHR systems can be overwhelm providers, leading to the dismissal of critical warnings. This reduces the effectiveness of DDI monitoring²

/ Lack of contextual clinical information

/ EHRs often fail to incorporate nuanced clinical factors, such as renal function, hepatic impairment, or patientspecific pharmacogenomics, which are crucial for assessing DDI risks³

/ Inconsistent drug interaction databases

/ EHR systems may use varying drug interaction databases, leading to discrepancies in the identification of potential interactions. This inconsistency can undermine clinical decision-making⁴

/ Limited integration with real-time data sources

/ Many EHR systems lack real-time integration with external data (e.g. lab results or pharmacy records), which can delay identification of interactions or changes in patient health status

DDIs and LAIs

Josh Havens, PharmD

Associate Clinical Professor, University of Nebraska Medical Center

HIV Clinical Pharmacist, Specialty Care Center

LAI PrEP dosing overview: Cabotegravir and lenacapavir

Product dosing

CABOTEGRAVIR¹

Optional oral lead in

Day 1: 1 x 3mL IM injection (600mg)

Month 2: 1 x 3mL IM injection (600mg)

Month 4 and every 2 months after: 1 x 3mL IM

injection (600mg)

Administration site

Administration tips

By healthcare provider, ventrogluteal injection (IM) preferred, dorsogluteal (IM) acceptable

- Injection should be given on the same date every 2 months; there is a +/- 7-day dosing window surrounding the target injection date
- Missed injections:
 - If <1 month has elapsed since the last injection, continue with injections every 2 months
 - If ≥1 month has elapsed since the last injection, reinitiate injections: 2 injections one month apart, then every 2 months thereafter
- · Planned missed injection:
 - · If missed injection is anticipated, oral bridging is available for up to 2 months

LENACAPAVIR2

Day 1: 2 x 1.5mL SQ injections (927mg) + 2 x 300mg tablets (600mg)

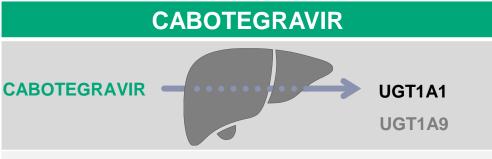
Day 2: 2 x 300 tablets (600mg)

+ Month 6 and every 6 months after: 2 x 1.5mL SQ injections (927mg)

By healthcare provider, abdominal injection (SC) or thigh injection (SC)

- Injections should be given every 26 weeks, +/- 2 weeks from the date of last injection
- · Missed injections:
 - If more than 28 weeks have elapsed since last injections, restart the initiation dosage regimen from Day 1
- Planned missed injection:
 - If missed doses are anticipated, oral bridging is available for up to 6 months

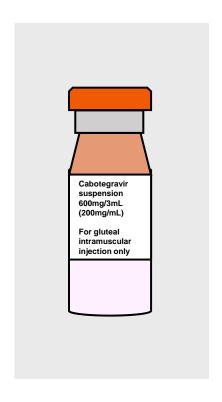
Cabotegravir LA for PrEP product overview


Metabolic pathway

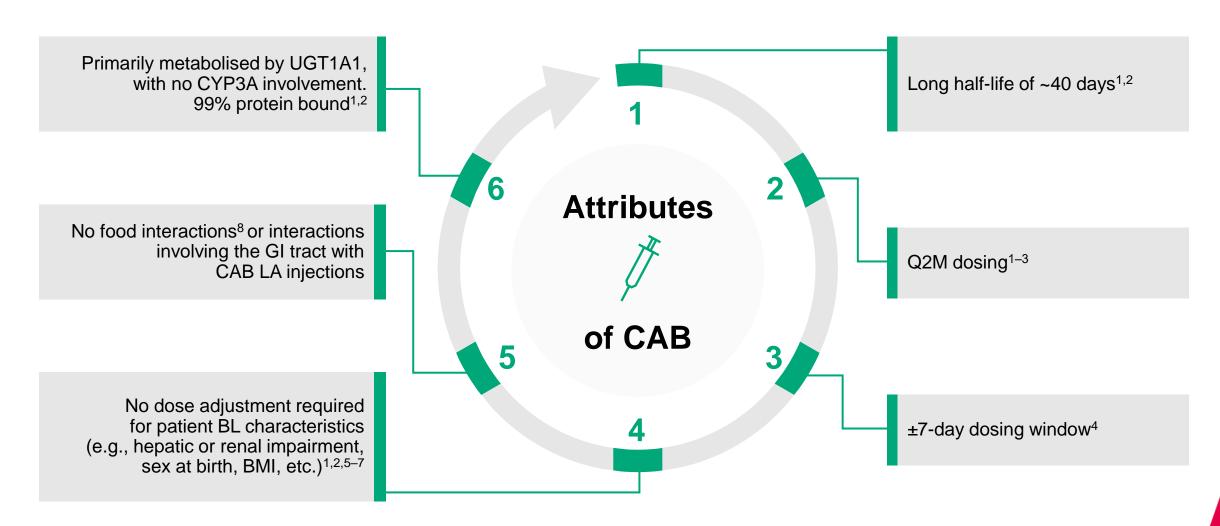
Drug Class

Half-life

Long-acting properties


Drug metabolism

2nd generation integrase strand transfer inhibitor


41 hours (Oral, Optional) – 5.6-11.5 weeks (Long-acting)

- Residual concentrations of cabotegravir may remain in systemic circulation for up to 12 months or longer.
- Cabotegravir is primarily metabolized by UGT1A1 with some contribution from UGT1A9¹
- Strong inducers of UGT1A1 or UGT1A9 are expected to decrease cabotegravir plasma concentrations¹⁻³

Pharmacological attributes of CAB LA

Cabotegravir LA DDIs are Unidirectional

Other medications ----- Cabotegravir

Metabolism	Drugs		IMPACT on CAB LA
Strong UGT1A1 and	Carbamazepine	Oxcarbazepine	CONTRAINDICATED
UGT1A9 inducers	Phenobarbital	Phenytoin	Decreases plasma
	Rifapentine		concentrations of cabotegravir
	Rifabutin		Decreases plasma concentrations of cabotegravir
			Dose adjustment doses required when coadministering cabotegravir LA and rifabutin. See USPI for details.

Lenacapavir for PrEP product overview

Metabolic pathway

Drug Class

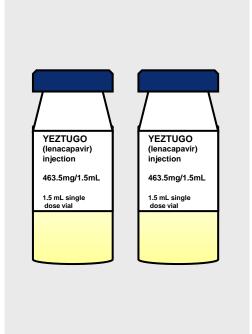
Half-life

Long-acting properties

Drug metabolism

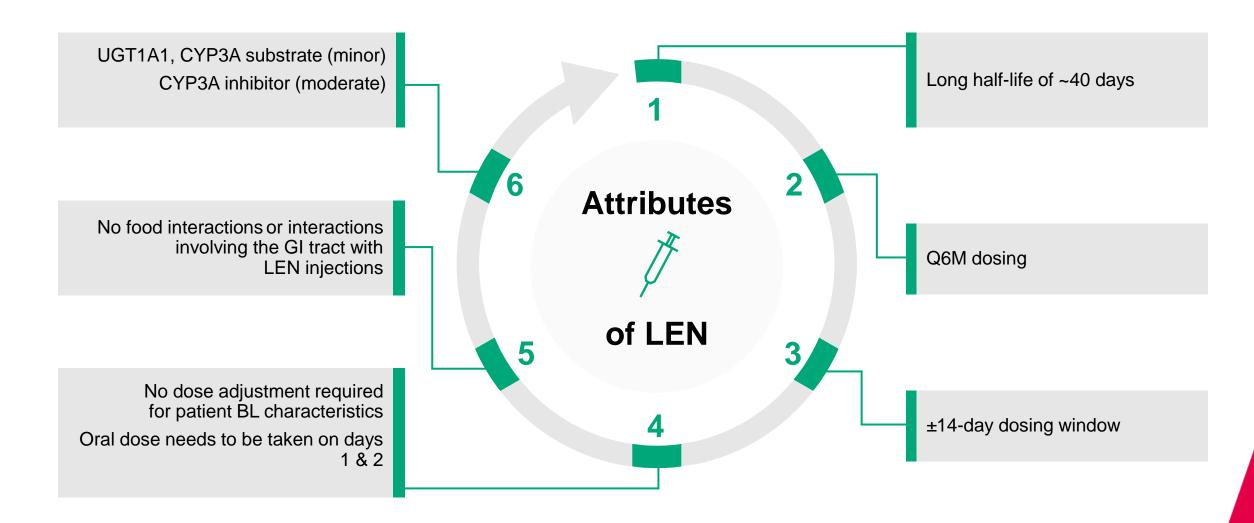
First-in-class, multistage HIV-1 capsid inhibitor

10-12 days (Oral, Required) – 8-12 weeks (Long-acting)


 Residual concentrations of lenacapavir may remain in systemic circulation for up to 12 months or longer.

Lenacapavir is a substrate of CYP3A, UGT1A1 and P-gp²

 Strong or moderate CYP3A4 inducers may significantly decrease plasma lenacapavir concentrations


Lenacapavir is a moderate inhibitor of CYP3A and a P-gp²

- Lenacapavir used with P-gp UGT1A1 and strong CYP3A4 inhibitors may significantly increase plasma lenacapavir concentrations
- Co-administration with sensitive substrates of CYP3A or P-gp may increase substrate concentrations and risk of adverse events

Pharmacological attributes of LEN

Lenacapavir DDIs are Bidirectional

Other medications ----- → Lenacapavir

Metabolism ¹ Drugs* ²		IMPACT on LEN			
Strong or moderate	Dexamethasone	Carbamazepine	Phenytoin		Decreases plasma
CYP3A inducers	Rifampin				concentrations of lenacapavir

Dose adjustment required when coadministering with a new strong or moderate CYP3A inducer. See USPI for details**

Lenacapavir -----→ Other medications

Metabolism ¹	Medications*2			IMPACT on other medications
CYP3A substrates	Alprazolam	Amlodipine	Apixiban	
	Budenoside	Clonazepam	Fludrocortisone	
	Buspirone	Diazepam	Quetiapine	
	Fentanyl	Felodipine	Rivaroxaban	Increases plasma
	Fluticasone	Oxycodone	Sildenafil	concentrations of other medications
	Salmeterol	Saxagliptin	Simvastatin	
	Tadalafil	Warfarin		
P-gp substrates	Apixaban	Digoxin	Dabigatran	
	Edoxaban	Fexofenadine		

^{*}Medications listed are examples from the FDA and are not a comprehensive list

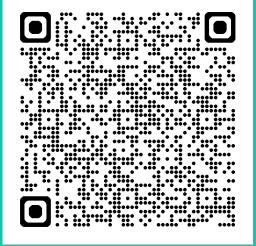
Cabotegravir and Lenacapavir: Additional DDIs described

Yeztugo (lenacapavir)

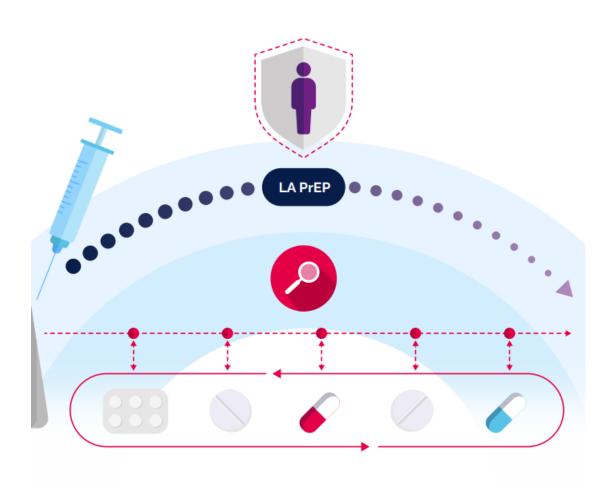
Lenacapavir (for PrEP)
Prescribing Information¹

Apretude (cabotegravir LA)

Cabotegravir LA (for PrEP)
Prescribing Information²



University of Liverpool HIV Interaction Checker³


DHHS Guidelines Drug-Drug Interactions⁴

LAI PrEP Takeaways

- / DDIs with LAIs are manageable
- / DDIs with CAB LA are unidirectional
- / Impact of other medications on CAB LA
- / (UGT1A1 substrate)
- / DDIs with LEN are bidirectional
- / Impact of other medications on LEN (3A substrate)
- / Impact of LEN on other medications (3A inhibition)
- / DDI impacts with LAIs can be challenging due to long half-life and can last for a long time (up to 9 to 12 months after last dose)

DDIs and Special Considerations Population and Practice Setting

Marisa Brizzi, PharmD, BCPS, AAHIVP

HIV/Pain Stewardship Clinical Pharmacist

UC Health

John Smith (he/him)

34 y/o African American cisgender male

Medical & Social History

- Social History: Cocaine use; works out 7 days/week
- Sexual History: Sexually active with >10 male partners in the past 30 days
- Current Medications: sildenafil prn (telehealth); TDF/FTC daily (d/c'd due to vomiting)
- Medical history:
 - Past Medical History: Tested positive for syphilis 3 years ago
 - Current Health Condition: No current STI symptoms

John presents for routine STI screening and to discuss LAI PrEP

Liverpool DDI Database: Interaction Potential of Chemsex Drugs with ART (treatment and prevention)

Drug	Metabolism	Drug class	Signs of toxicity
Benzodiazepines: Midazolam, triazolam	CYP3A4	Boosted PI, capsid inhibitor, INSTI, NNRTI, NRTI	Drowsiness, disorientation
Benzodiazepines, other	CYP3A4	Boosted PI, capsid inhibitor, INSTI, NNRTI, NRTI	Drowsiness, disorientation
Cocaine	CYP3A4	Boosted PI, capsid inhibitor, INSTI*, NNRTI, NRTI	Tremors, paranoia, seizures, headache, hyperthermia
Ecstasy (MDMA)	CYP2D6	Boosted PI [†] , capsid inhibitor, INSTI, NNRTI, NRTI	Hypertension, seizures, hyperthermia, arrythmia, tachycardia, teeth grinding
GHB	GHB dehydrogenase CYP?	Boosted PI [‡] , capsid inhibitor [‡] , INSTI, NNRTI, NRTI	Seizures, bradycardia, respiratory depression
Ketamine	CYP3A4	Boosted PI, capsid inhibitor, INSTI, NNRTI, NRTI	Respiratory depression, hallucinations
Mephedrone	CYP2D6	Boosted PI [§] , capsid inhibitor, INSTI, NNRTI, NRTI	Tachycardia, agitation
Methamphetamine	CYP2D6	Boosted PI [¶] , capsid inhibitor, INSTI, NNRTI, NRTI	Hypertension, seizures, hyperthermia, arrythmia, tachycardia, teeth grinding
Poppers (nitrates)	Non-CYP mediated	Boosted PI, capsid inhibitor, INSTI, NNRTI, NRTI	Dizziness, hypotension
Sildenafil, tadenafil, vardenafil	CYP3A4	Boosted PI, capsid inhibitor, INSTI, NNRTI, NRTI	Chest pain, nausea, arrythmia

PI, protease inhibitor; INSTI, integrase strand transfer inhibitor; NNRTI, non-nucleoside reuptake inhibitor; NRTI, nucleoside reuptake inhibitor;

Interaction potential Black=Limited Orange=Intermediate Green=Low Red=High

^{*}Note caution with drugs with known risk of QT prolongation; Always refer to the prescribing information for list of DDIs with licensed medications; † Limited CYP2D6 inhibition by small PK changes could be significant due to non-linear PK; ‡Unknown – caution due to GHB narrow therapeutic index; § Limited CYP2D6 inhibitor; ¶ Limited CYP2D5 inhibition by small PK changes could be significant due to non-linear PK CYP3A, cytochrome P450 3A

Lenacapavir DDIs are Bidirectional

Other medications ----- → Lenacapavir

Metabolism ¹	Drugs*2	rugs* ²		IMPACT on LEN	
Strong or moderate	Dexamethasone	Carbamazepine	Phenytoin		Decreases plasma
CYP3A inducers	Rifampin			-	concentrations of lenacapavir

Dose adjustment required when coadministering with a new strong or moderate CYP3A inducer. See USPI for details**

Lenacapavir -----→ Other medications

Metabolism ¹	Medications*2			IMPACT on other medications
CYP3A substrates	Alprazolam	Amlodipine	Apixiban	
	Budenoside	Clonazepam	Fludrocortisone	
	Buspirone	Diazepam	Quetiapine	
	Fentanyl	Felodipine	Rivaroxaban	Increases plasma
	Fluticasone	Oxycodone	Sildenafil	concentrations of other medications
	Salmeterol	Saxagliptin	Simvastatin	
	Tadalafil	Warfarin		
P-gp substrates	Apixaban	Digoxin	Dabigatran	
	Edoxaban	Fexofenadine		

^{*}Medications listed are examples from the FDA and are not a comprehensive list

DDIs and telehealth: Challenges

/ Limited access to complete patient medication history

/ Telehealth providers face challenges such as fragmented records, reliance on patient self-reporting, and lack of coordination, which can result in incomplete medication histories and increased risk of drug-drug interactions.^{1,2}

/ Absence of automated DDI alerts

/ Many telehealth platforms lack built-in clinical decision support systems (CDSS) that flag potential DDIs during the prescribing process.^{3,4}

/ Challenges with polypharmacy

Lack of communication between telehealth providers and primary care physicians can result in overlapping or conflicting prescriptions.^{2,7,9}

/ Limited physical assessments for DDI symptoms

DDIs can cause physical symptoms that telehealth providers cannot observe directly during virtual consultations. 2,10

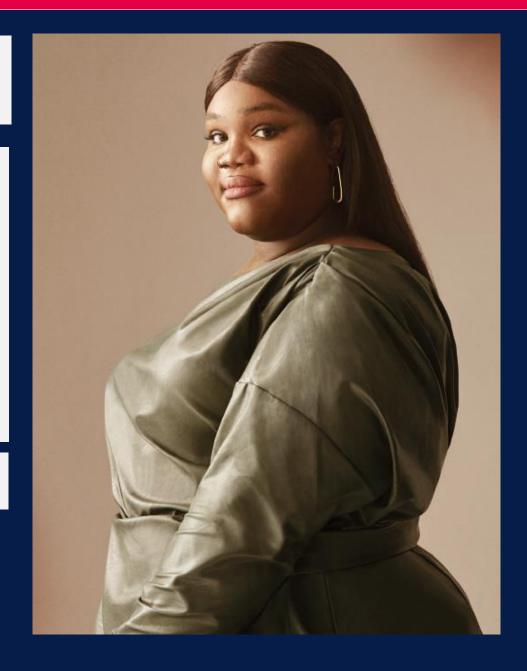
/ Lack of EHR integration

/ Non-integrated telehealth platforms limit access to full patient histories, complicating drug interaction identification. 3,5,9

/ Limited collaboration between providers

/ Telehealth providers may not communicate with pharmacists involved in the patient's care, reducing opportunities for identifying DDIs.^{6,7}

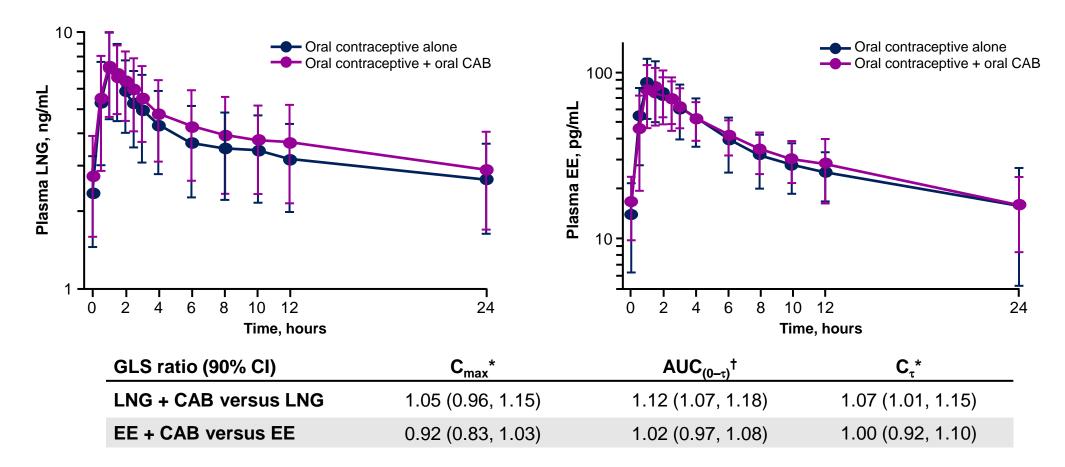
Discussion


Alexi Johnson (she/her)

28 y/o African-American cisgender female

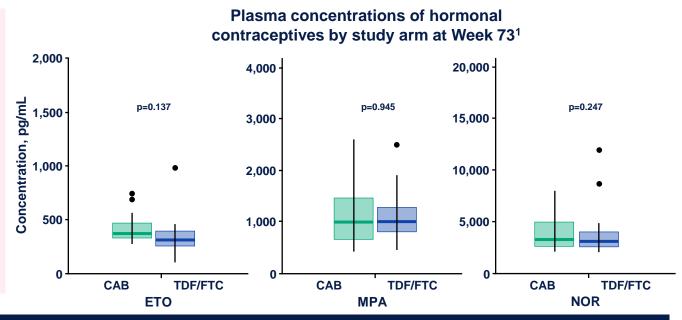
Medical & Social History

- Social History: Denies any recreational drug use
- Sexual History: Heterosexual in an open relationship with one male partner; reports inconsistent condom use
- Current Medications: lenacapavir for PrEP, planning to start treatment for tuberculosis (TB): rifampin, isoniazid, pyrazinamide, ethambutol
- Medical History:
 - Tested positive for chlamydia 1 year prior
 - Current Health Condition: Reports no symptoms of STIs.
- Medical Notes: Open to planning a family within the next year


Alexi presents for annual Well-Woman exam and STI screening

CAB LA does not interact with oral contraceptives

/ CAB can be administered with hormonal contraceptives without dose adjustment


HPTN 084 sub-study: No impact of CAB on hormonal contraceptives

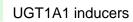
Analysis Details

The registrational HPTN 084 trial provided an opportunity to assess pharmacologic interactions between CAB, TDF/FTC, and commonly used hormonal contraceptives¹

170 consenting participants provided samples whilst on treatment (CAB LA: 80; TDF/FTC: 90)*

- / In CAB LA users, contraceptive concentrations were comparable to participants receiving TDF/FTC for all three contraceptives¹
- Percentage of participants with contraceptive concentrations exceeding threshold for ovulation suppression was high¹
- / CAB concentrations were comparable across contraceptive types¹
- / Associations between TDF/FTC and hormone concentrations could not be effectively evaluated due to low adherence to TDF/FTC¹

Data confirm CAB's low potential for significant clinically relevant interactions with hormonal contraception^{1,2}


LEN for PrEP and Oral Contraceptives

/ At present, there are no subgroup analyses evaluating the efficacy and safety outcomes of LEN in participants receiving hormones in PURPOSE1

Cabotegravir LA Drug-Drug interactions (per Apretude USPI)

DRUG CLASS	EFFECT ON CONCENTRATION	SEVERITY
Anticonvulsants: Carbamazepine, oxcarbazepine, phenobarbital, phenytoin	↓ cabotegravir	CONTRAINDICATED
Antimycobacterials: Rifampin, rifapentine	↓ cabotegravir	CONTRAINDICATED
rifabutin ^b	↓ cabotegravir	DOSING ALTERATION RECOMMENDED*

UGT1A1 inducers and CYP3A inducers

When prescribing LA PrEP, consider DDIs that might occur now and in the future with polypharmacy, including Rx / OTC / recreational drugs and supplements

Recommendation for dosing adjustments for those on lenacapavir initiating therapy with strong CYP3A4 inducers (per Yeztugo USPI¹)

Maintain Scheduled Continuation Injection Dosing	Schedule for <u>Supplemental</u> Doses of Lenacapavir		
	Time	Dosage	
Continue to administer once	On the day strong CYP3A4 inducer is initiated (which should be at least 2 days after lenacapavir is first initiated	Supplemental dosage: Step 1 927 mg SC lenacapavir (2 x 1.5 ml) and 600 mg orally (2 x 300 mg tablets)	
every 6-months scheduled continuation dosing of lenacapavir 927 mg SC (2 x 1.5 mL injections), plus	On day after strong CYP3A inducer is initiated	Supplemental dosage: Step 2 600 mg orally (2 x 300 mg tablets)	
administer supplemental doses of lenacapavir as shown in this table	If strong CYP3A inducer is co-administered for longer than 6 months	Subsequent supplemental dosage Every 6- months ^a from initiation of strong CYP3A inducer, continue to administer supplemental doses of YEZTUGO as described above in Steps 1 and 2.	
	After stopping the strong CYP3A inducer, continuation injection dosing of lenacapavir	nue the once every 6-months scheduled	

Examples of STRONG CYP 3A4 inducers²:

- Carbamazepine
- Apalutamide
- Enzalutamide
- Ivosidenib
- Lumacaftor
- Mitotane
- Phenytoin
- Rifampin
- St. John's Wort

a. 26 weeks +/- 2 weeks

Dosing recommendations are not available for lenacapavir use in individuals already receiving moderate or strong CYP3A4 inducers OR receiving the oral formulation of lenacapavir

Discussion

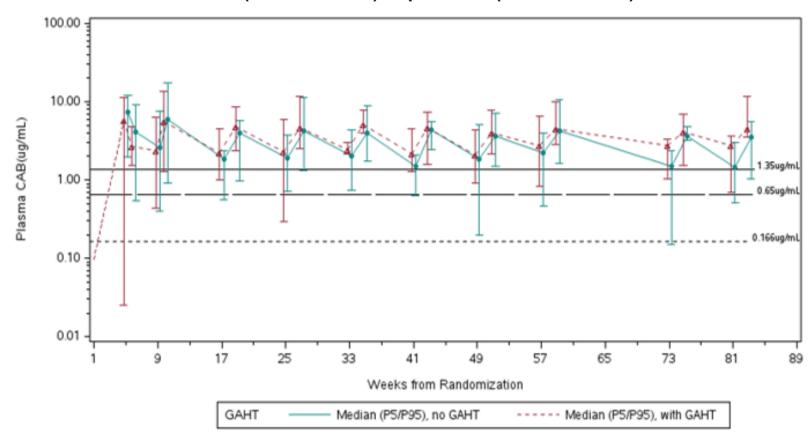
Maria Fernandez (she/her)

27 y/o Hispanic transgender woman

Medical & Social History

- Social History: Denies any recreational drug use
- Sexual History: Sexually active with multiple men
- Current Medications: spironolactone and estradiol (Feminizing Gender-Affirming Hormone Therapy)
- Medical History:
 - Previous STI: Tested positive for gonorrhea 6 months ago, treated successfully with antibiotics
 - Current Health Condition: Reports no current symptoms of STIs

Maria presents for routine STI screening



TGW in HPTN 083: CAB LA PK not impacted by GAHT

Concentration-time profiles of CAB in TGW in the absence (solid blue line) or presence (dotted red line) of GAHT

- / CAB PK was compared in a subset of TGW in the presence or absence of GAHT; in this analysis, 30 participants accessed GAHT, while 23 participants were not using GAHT
- CAB drug concentrations
 were comparable between the
 groups, suggesting the lack
 of a GAHT effect on CAB PK

LEN for PrEP and GAHT

- / Gender-affirming hormone therapy was reported in 253 participants (11.6%) in the LEN group (n=2,183) and 131 participants (12%) in the FTC/TDF group (n=1,088).
- / Currently, there are no subgroup analyses available that assess the efficacy and safety outcomes of LEN specifically in participants receiving gender-affirming hormone therapy.
- / In total, 534 participants in the PURPOSE 2 study were evaluated for their use of gender-affirming hormone therapy. Pharmacokinetic (PK) analysis indicated that gender-affirming hormone therapy did not affect LEN exposure levels.

Discussion

Q & A

- Please use the Q&A function to submit comments and questions
- If we are unable to get to your question, we will ensure to follow up with you!

FEEDBACK

Tell us what you think of today's program

Thank You!

Visit viivhcmedinfo.com to:

- Search scientific and medical information for ViiV Healthcare medicines
- / Review ViiV Congress presentations and posters
- / Locate a ViiV Medical Science Liaison
- / Chat live with ViiV Healthcare Professionals*
- / Or call us at 1-888-226-8434*

*Available weekdays from 8am—6pm EST

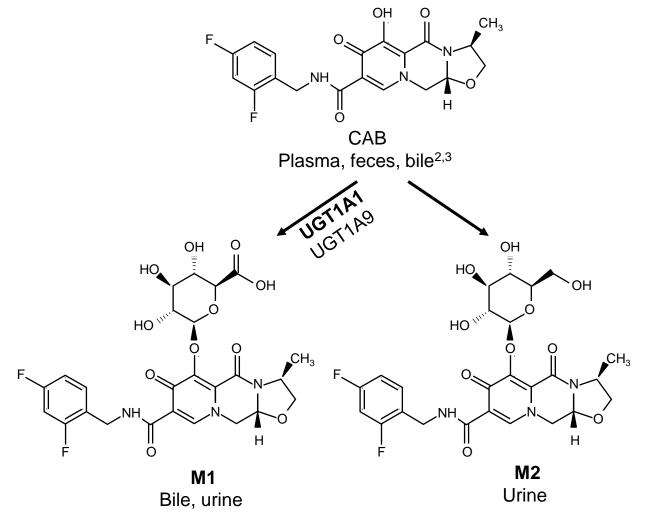
MEDICAL INFORMATION WEBSITE

viivhcmedinfo.com

SCAN TO VISIT OUR WEBSITE

Back up slides

CAB clinical pharmacology attributes


		CAB LA		
Attribute	Oral CAB QD	Q1M	Q2M	
Dose (Phase III)	30 mg ¹	600 mg (3 mL) initiation dose 400 mg (2 mL) continuation dose ^{2,3}	600 mg (3 mL) initiation and continuation doses ³	
Absorption	Rapidly absorbed; T _{max} 3 hours ¹	Slowly absorbed; T _{max} 1 week ^{2,3}		
Impact of food	None ¹	NA		
Inter-subject PK variability Low to moderate ⁴		Moderate to high, consistent with IM dosing ³		
Impact of covariates on PK	No age, race, or gender impact ¹	Slower initial absorption rates were observed in females and subjects with high BMI. No clinically significant differences were observed based on age, sex, race/ethnicity or <i>UGT1A1</i> polymorphisms ^{2,3} In analyses of BL factors, a small association between BMI (which is correlated with CAB PK) and CVF was seen, mostly in the presence of ≥1 other BL factor ⁵		
Elimination t _{1/2}	41 hours ¹	5.6–11.5 weeks (absorption-limited rate) ^{2,3}		
Metabolism	Primarily m	Primarily metabolised by UGT1A1, with minor UGT1A9 component ¹⁻³		
Protein binding		99.8% protein bound ^{1–3}		
Drug interaction liability		Low potential to cause or be a victim of D)DI ^{2,3}	

CAB: Human metabolism and excretion

/ CAB is primarily metabolised by UGT1A1 with a minor UGT1A9 component; there is no CYP3A4 involvement¹

- / Renal elimination of unchanged CAB is negligible (0% of dose)²
- / CAB is the predominant circulating compound in plasma²

Key Questions	Recommendations
What process should be used to develop and maintain a standard set of DDIs?	 Form a national consensus expert panel to develop and maintain a standard set of clinically relevant DDIs for CDS systems, with oversight by a national organization Use a systematic process for assembling DDI evidence Grade recommendations for risk management Develop a web-based tool to solicit community feedback on recommendations Ensure periodic and timely updates of the standard DDI set
What information should be included in a knowledgebase of standard DDIs?	 Each DDI should include: Severity classification Clinical consequences Frequency of harm and exposure Modifying factors Mechanism of the interaction Recommended actions, with strength of recommendation Evidence, with quality ratings
Can/should a list of contraindicated drug pairs be established?	 Classifying an interaction as "contraindicated" should occur infrequently and should be reserved for drug pairs where coadministration should not be permitted under any circumstances
How can DDI alerts be more intelligently filtered?	 Health care institutions should convene an interdisciplinary committee to periodically review commonly overridden alerts and suggest ways to either suppress alerts of minimal value or change their presentation format Allow users to provide feedback on alerts as part of continuous quality improvement Do not indiscriminately "turn off" alerts Modifications to DDI alerts should be done cautiously, with careful evaluation to ensure that patient safety is not compromised Strategies to actively monitor for signs of harm for patients receiving concurrent medications that may result in a DDI should be incorporated into CDS systems

CDS = clinical decision support.

Information from: Tilson H, Hines LE, McEvoy G, et al. Recommendations for selecting drug-drug interactions for clinical decision support. Am J Health Syst Pharm 2016;73:576-85.