

We will begin shortly...

Welcome to the 2025 Post Fall Conference Webinar

Your audio has been muted upon entry.

Please utilize the Q&A Function to submit any questions you may have

For technical difficulties, please contact Lentz McNeill at (336) 681-7445

These slides are being provided in response to your request for information and not for further distribution.

Some information contained in these slides may be outside the approved US Prescribing Information. This information is not intended to offer recommendations for administration of this product in a manner inconsistent with the US Prescribing Information.

In order for ViiV Healthcare to monitor the safety of our products, we encourage healthcare professionals to report adverse events or suspected overdoses to the company at 1-888-825-5249.

Please consult the accompanying US Prescribing Information.

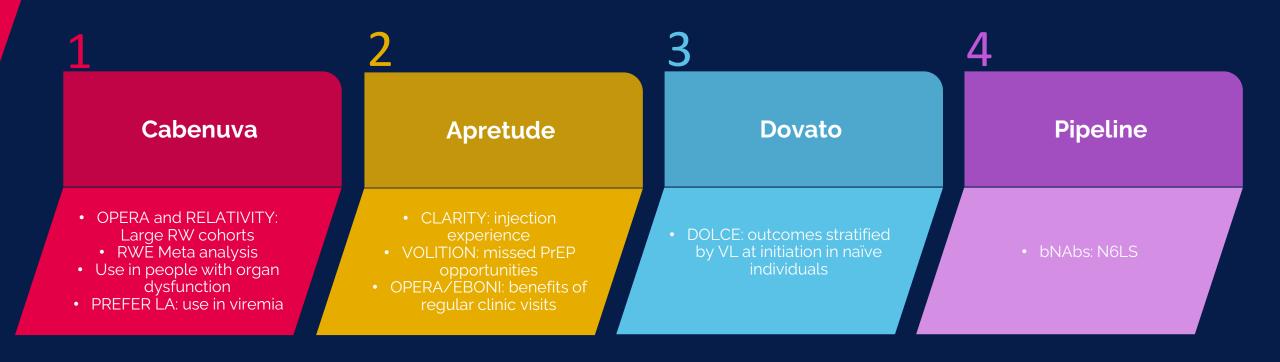
2025 Post Fall Conference Webinar

Anu Hazra, MD

Associate Professor of Medicine
University of Chicago

Charlotte-Paige Rolle, MD, MPH

Director of Research Operations, Adjunct Assistant
Professor of Global Health


Orlando Immunology Center, Emory University Rollins
School of Public Health

Dora Martinez, MD, AAHIVS, FAAFP Regional Medical Director North America Medical Affairs

Agenda

November 12 • 7:00 - 8:15 PM ET

Please use the Q&A function to submit comments and questions throughout the Webinar

ViiV Healthcare **Buzz at Fall Conferences 2025** LAIs **Implementation bNABS PrEP HIV and Aging Addressing unmet Real world** needs cohorts

Cabenuva

Elizabeth Moore, PhD, FNP-BC, ACRN

Medical Manager, Long Acting Injectables

ViiV Healthcare

High effectiveness and low rates of VF with resistance in virally suppressed people with HIV across real-world cohorts

	IDW 2025	EACS 2025	EACS 2025	EACS 2025	EACS 2025
	OPERA ¹	Hospital Clínic ²	ATHENA ³	Fofana et al ⁴	Dat'AIDS ⁵
	N=4,000 Median follow-up: 14 months (IQR: 7–23) On-treatment analysis	N=461 52 Weeks On-treatment analysis	N=585 1.9 years (IQR: 1.5 – 2.4)	N=1,441 At least 6 months	N=2,196 Month 13 (IQR: 7 – 19)
Virologically suppressed [†]	95%	99%	NR	NR	NR
VF [‡]	1% (n=43)	1.7% (n=8)*	2.4% (n=11)	2.6% (n=37)**	1.9% (n=42)
VF with resistance	NR	NR	1.7% (n=10)	0.9% (n=13)	0.6% (n=13)¶

OPERA: High effectiveness and persistence on CAB+RPV LA in >5,000 people across adult age groups, including people with viremia

Study population and design¹

Demographic and clinical characteristics at CAB+RPV LA initiation (N=5,264)*

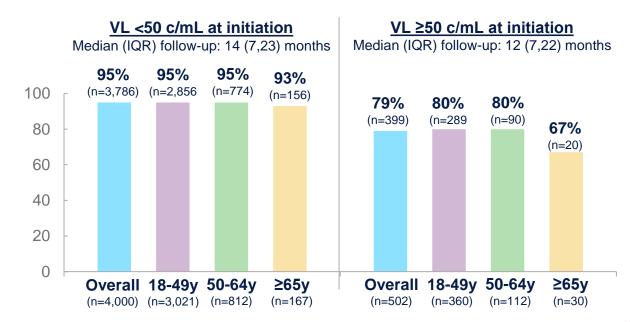
/ VL <**50 c/mL**: 87%

/ VL ≥50 c/mL:

/ Median (IQR) age: 38 (32, 50) years

/ Female: 16%

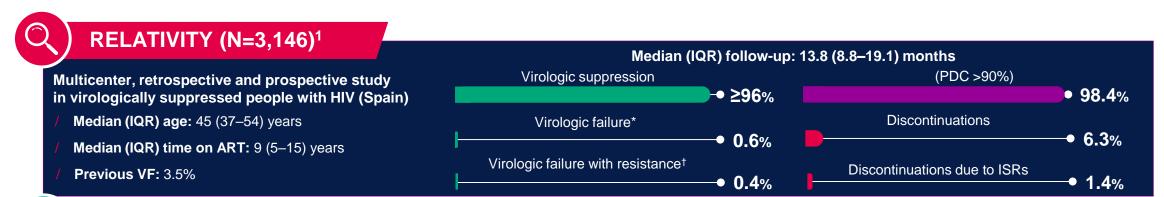
Black race: 44%

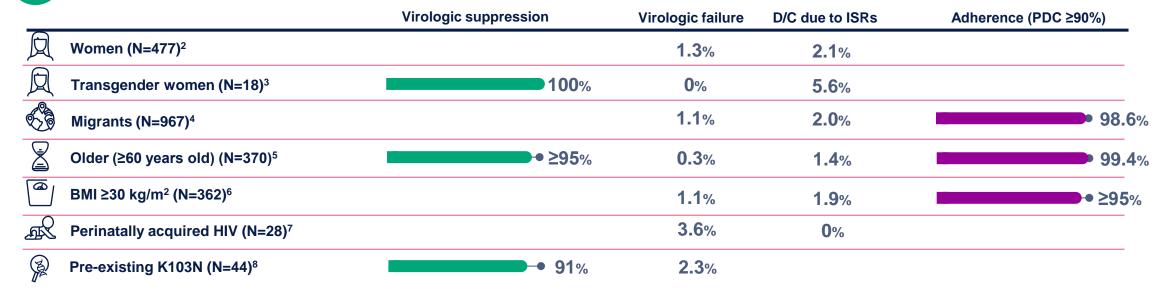

Switch from INSTI:

76%

Effectiveness & Persistence

- The majority (79%, 3,731/4,748) of complete initiators alive and in care at time of analysis remained on CAB+RPV LA, and those aged ≥50 years had slightly longer cumulative months on CAB+RPV LA than those aged 18-49[‡]
- VL <50 c/mL at initiation: most (93-95%) remained suppressed at last VL across age groups and CVF was rare (1%), with no individuals aged ≥65 years experiencing CVF
- VL ≥50 c/mL at initiation: virologic suppression at last measure ranged from 67-80%. Among those who suppressed (n=355), CVF was rare (2%), with no individuals aged 50-64 years experiencing CVF


Virologic suppression (VL <50 c/mL) among complete initiators with ≥1 follow-up VL


IDWeek 2025; October 19-22, 2025; Atlanta, GA

Sension M, et al. IDWeek 2025. P-371

RELATIVITY: Large real-world cohort shows CAB + RPV LA is highly effective in diverse groups of people with HIV

品 RELATIVITY (subgroups)^{2-8‡}

CAB+RPV LA RWE Meta-analysis: High effectiveness and adherence to injections, and low rates of VF with resistance and discontinuation (1/2)

Study design, population and results

- The meta-analysis included 27 studies, with 7,687 virologically suppressed (HIV-1 RNA <50 copies/mL) individuals receiving CAB+RPV LA across 9 countries
 - Studies were identified through a systematic literature review of congress abstracts and articles published between January 2020 and March 2025
 - Due to differences in endpoint definitions and time points used, the number of studies included for each endpoint varied

Results

- At Month 12, the estimated proportion of people with HIV with virological suppression, and adherence to injections was high:
 - Virologic suppression: estimated
 93.4% (95% CI 88.7–96.9)
 - Adherence to injections: estimated
 95.1% (95% CI 89.3–98.7).
 N=4,292 injections across 4 studies

Virologic suppression* at M12

Study	Time point	Events, n	Total, N		Viral suppression at M12*	95% CI	Weight, fixed (%)	Weight, random (%)
Spampinato et al. 2024	Week 48	50	51	 	0.980	[0.896; 1.000]	3.0	12.7
Schneider et al. 2024	Month 12	181	187	i 	0.968	[0.931; 0.988]	11.0	17.3
Sension et al. 2025	Month 12	511	538	¦ † □	0.950	[0.928; 0.967]	31.5	19.0
Sax et al. 2025	Month 12	452	520		0.869	[0.837; 0.897]	30.4	19.0
Jonsson–Oldenbüttel et al. 2024	Month 12	301	351		0.858	[0.817; 0.892]	20.5	18.5
Haser et al. 2024	Month 12	59	61	-	0.967	[0.887; 0.996]	3.6	13.5
Fixed effects model				•	0.918	[0.904; 0.930]	100.0	-
Random effects model					0.934	[0.887; 0.969]	-	100.0

0.8 0.85 0.9 0.95

Heterogeneity: l^2 =89.6%, τ^2 =0.0084, p<0.0001

^{*}Virologic suppression defined as VL <50 c/mL in these 6 studies.

²⁰th European AIDS Conference; October 15-18, 2025; Paris, France

CAB+RPV LA RWE Meta-analysis: High effectiveness and adherence to injections, and low rates of VF with resistance and discontinuation (2/2)

Results (cont.)

- The estimated proportion of virologic failure and virologic failure with resistance was low:
- Virologic failure: estimated 1.2% (95% CI 0.6–2.0); N=1,269 across 8 studies
- Virologic failure with resistance: estimated 0.3% (95% CI 0.0–1.2)
- For CAB+RPV LA, the estimated proportion of discontinuation due to any reason was infrequent and the discontinuation due to ISR was low:
 - Discontinuation due to any reason: estimated 7.3% (95% CI 4.4–10.9); N=1,361 across 10 studies
 - **Discontinuation due to ISR:** estimated **2.6%** (95% CI 1.5–3.9); N=758 across 4 studies

Virologic failure with resistance at M12

Study	Time point	Events,	Total, N		VF at M12	95% CI	Weight, fixed (%)	Weight, random (%
John et al. 2024	Month 12	0	60	Ū———	0.000	[0.000; 0.060]	6.0	10.1
Jonsson-Oldenbüttel et al. 2024	Month 12	3	351		0.009	[0.002; 0.025]	35.0	34.3
Gagliardini et al. 2024	Year 1	1	506		0.002	[0.000; 0.011]	50.4	40.5
Kirk et al. 2024	Month 12	1	33		0.030	[0.001; 0.158]	3.3	6.0
lannone et al. 2025	Month 12	1	53		0.019	[0.000; 0.101]	5.3	9.1
Fixed effects model				•	0.001	[0.000; 0.007]	100.0	-
Random effects model					0.003	[0.000; 0.012]	-	100.0
Heterogeneity: <i>P</i> =30.79 <i>p</i> =0.2171	%, t ² =0.0007	,		l 	_			
				0 0.05 0.1 0.15	0.2			

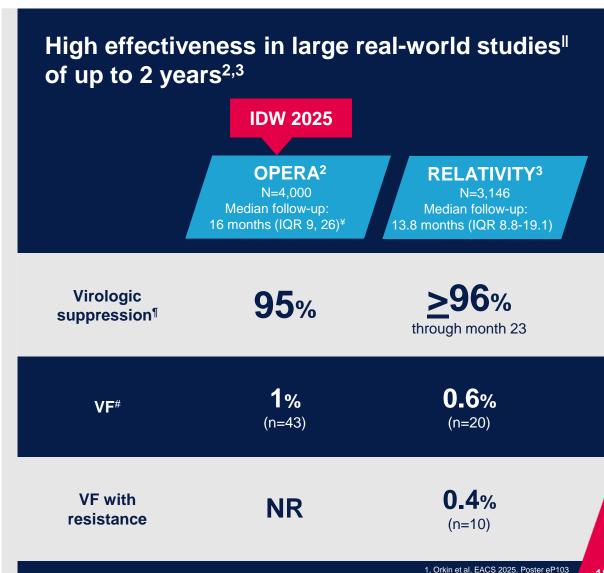
 Sensitivity analyses showed the estimated proportions were consistent for all endpoints when pooling studies reporting outcomes between Months 9 and 15 with consistent outcome definitions and/or pooling all studies between Months 9 and 15 regardless of outcome definition

CAB + RPV LA: RWE supports the consistent high effectiveness and low rates of virologic failure with resistance

Meta-analysis of published RWE¹

27 studies, encompassing 7,687 virologically suppressed (VL <50 c/mL) people with HIV receiving CAB + RPV LA for 12 months.

93% virologic suppression* maintained after switching to CAB + RPV LA


0.3% resistance at failure† with overall low virologic failure rate (1.2%)

95% injections
administered on time[‡]
within the ±7-day dosing window

7% discontinuations for any reason§ with 2 6% ISR-related

CAB+RPV LA: Real-world use in people with organ dysfunction

People with severe renal impairment

CAPRI¹

US, 48 Weeks

Study Design: Phase IV clinical study (2 centers)

/ 12 individuals with CKD stage 4/5 (CrCl <30 mL/min), of which 6 were on hemodialysis

Key results

- → All participants remained virologically suppressed at W48*
- Renal function remained stable overall, and increased among renal transplantations
 - eGFR BL vs W48: 15±7 vs 25±16, p=0.065
- Consistent PK
- ISRs reported were mostly mild in severity and short in duration; pain was most commonly reported ISR
- → High effectiveness and good safety profile in people with severe renal impairment

Midway Specialty Care Center²

US

Study Design: Retrospective case series of those with ESRD who initiated CAB+RPV LA between 01/2021 and 11/2024

/ 9 individuals: 1 receiving PD, 8 receiving HD

Key results

- All remained virologically suppressed with no missed injections
- Duration on CAB+RPV LA ranged from 0.7 2.8 years (4 with >114W and 4 with <55W)
- → No VFs, emergent RAMs, adverse events, or treatment discontinuations reported

→ High effectiveness and good tolerability observed in people with HIV on dialysis treated with CAB+RPV LA

People with liver fibrosis

San Raffaele hospital³

Italy, follow-up time NR

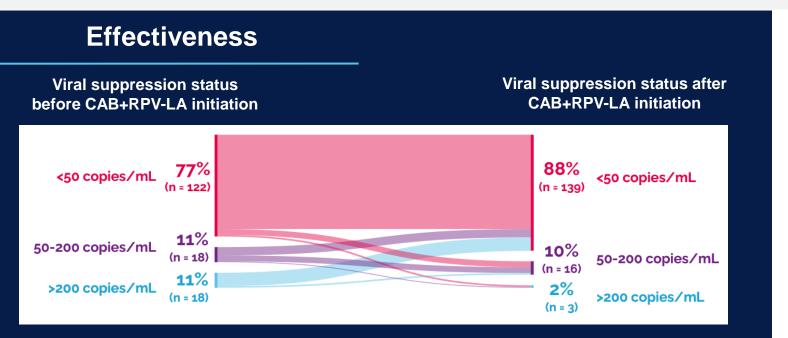
Study Design: Observational, single center, real-world cohort study

/ 371 individuals, 545 CAB+RPV concentrations*

Key results

- → CAB concentrations did not vary by FIB-4 category, and RPV concentrations were higher in people with FIB-4 ≥1.30 vs <1.30</p>
 - Both CAB and RPV concentrations were positively related to total bilirubin
- No clinical events or hepatic toxicity occurred, and among people with FIB-4 ≥1.30, 4 (2.2%) discontinued therapy vs 17 (4.8%) among those with FIB-4 <1.30
- → Supports the potential use of CAB+RPV LA in people with mild-to-moderate liver fibrosis

DISCUSSION


PREFER LA: High virologic suppression and adherence to CAB+RPV LA injections in people with prior adherence challenges to oral ART

Study population and design

PREFER-LA is an observational, cross sectional US study of people with HIV on CAB+RPV LA for ≥6 to ≤18 months (N=159)

Inclusion criteria: People with HIV aged ≥18 years with documented adherence challenges* on prior oral ART as identified by their HCP, and who had been on CAB + RPV LA for 6-18 months, excluding those who discontinued treatment

/ Median age (IQR): 39 (32,53) / Ciswoman: 17% / Black: 57% / ~70% had received ≥2 prior regimens / 59% switch from BIC/FTC/TAF[†]

Effectiveness & Adherence

98% achieved or maintained viral suppression </=200 c/mL after CAB+RPV LA initiation
At BL, 89% had VL <200 c/mL

87% had no missed CAB+RPV LA dose in last 6 months

Driven by CAB+RPV LA fitting with their lifestyle, convenience of clinic visits and in person support

13% missed/skipped/delayed a dose of CAB+RPV LA in last 6 months

Due to forgetting appointments or those not fitting with work/social/travel plans, insurance coverage or transport issues

PREFER LA: High preference for CAB+RPV LA among people with HIV with prior adherence challenges to oral ART

Preference and benefits for people with HIV

preferred CAB + RPV LA vs daily oral ART

mainly due to believing injections are more reliable than daily oral ART to keep VL undetectable (71%), and not having to worry about others seeing/finding their HIV pills (71%)

Impact that switching to CAB+RPV LA from daily oral ART has had on people with HIV (n=159):

Positive impact on overall health (67%)

Positive impact on quality of life (79%)

Helped control HIV better (79%)

Fits better with daily life/ everyday activities (83%)

→ 90% (n=159) of people with HIV were very likely to recommend CAB+RPV LA to other people with adherence challenges, and most people reported overall positive feelings toward CAB+RPV LA and more positive feelings towards themselves since switching

HCP perspectives on persistence and benefits for adherence challenged people with HIV

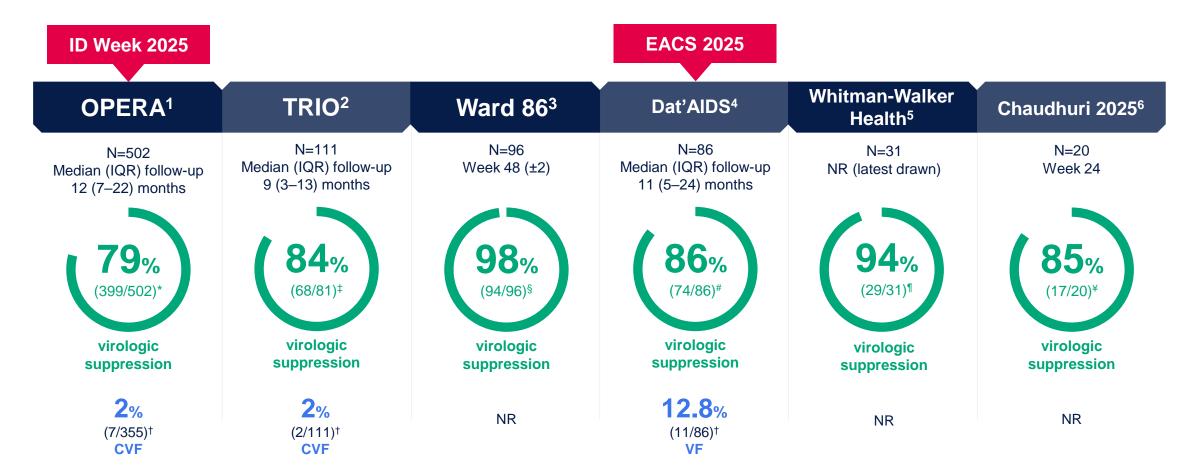
The **most common reason** among both HCPs and people with HIV for switching to CAB+RPV LA was to **improve treatment adherence**.

95% (n=151) of HCPs reported that they foresee PWH remaining on CAB+RPV LA long term, mainly driven by the regimen fitting with people's lifestyle, people being more adherent to treatment, and personal preference

HCP reported benefits of implementing CAB+RPV LA for people with adherence challenges (n=13)*

Person's HIV is better controlled

Assurance of people with HIV adherence to ART


People with HIV have better overall engagement with care

People are more present for vaccines and screening tests

High effectiveness of LA ART in people with viremia at initiation

^{*}VL <50 c/mL at time of analysis among those who completed initiation and had ≥1 follow-up VL; †OPERA: CVF defined as two consecutive VL ≥200 c/mL or single VL ≥200 c/mL followed by discontinuation within 2 (Q1M) or 4 (Q2M) months after suppression to VL <50 c/mL, TRIO: NR, Dat'AIDS: VL >200 c/mL after viral suppression, 2 consecutive VL >50 c/mL after viral suppression, or failure to reach viral suppression by 6 months; ‡Last VL <50 c/mL (93% had last VL <200 c/mL); §VL ≤200 c/mL; #Proportion who achieved VIral suppression <50 c/mL: ¶VL ≤50 c/mL ¥VL <20 c/mL (100% achieved VL <200 c/mL)

DISCUSSION

Apretude

HIV: Who is Impacted in the US?¹

New HIV diagnoses in the US and dependent areas in the most affected populations

1.1M

people living with HIV in US at the end of 2023^{1*}

~39K

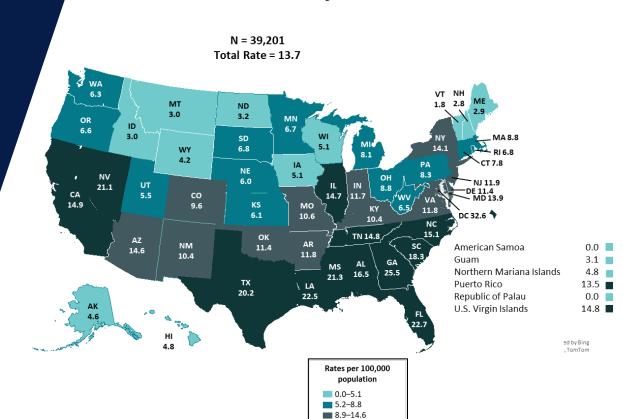
new HIV diagnoses occurred in 20233

81%

occurred in cisgender men³

19%

occurred in cisgender women³


55%

occurred among those 13 to 34 years of age3

HIV by Geography

Southern states make up 39% of the US² population but have the highest burden of HIV infections, accounting for **51%** of annual HIV infections in the US in 2023³

HIV diagnoses, 2023—United States and 6 territories and freely associated states

■ 14.7–32.6

Data classified by quartiles

*CDC surveillance data are for those 13 years of age and older

HIV: Human immunodeficiency virus; **PrEP:** Pre-exposure prophylaxis; **US:** United States.

1. US Statistics. 5 December 2023. https://www.hiv.gov/hiv-basics/overview/data-and-trends/statistics.

United States Population Growth by Region, date accessed May 5, 2025

^{3. &}lt;u>HIV Diagnoses, Deaths, and Prevalence: 2025 Update | HIV Data | CDC</u> Apr 29, 2025

EHE Goals and Strategies:

Reaching

75%*

reduction in new HIV infections by 2025

and at least

90%

reduction by 2030.

HIV: Human immunodeficiency virus;; PrEP: Pre-exposure prophylaxis; PWH: People with HIV; SSP: syringe services program; U=U: undetectable equals untransmittable

1. HIV.gov. Key Strategies in the Plan. (2022, July 1). Accessed January 8, 2025

*Goal was not met

Diagnose

all individuals with HIV as soon as possible

Treat

PWH rapidly and effectively (U=U)

Prevent

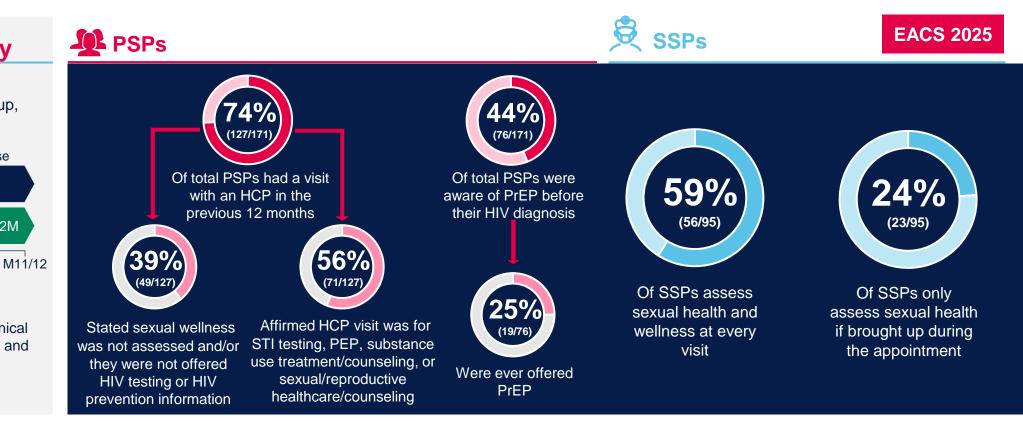
new HIV transmissions by using proven interventions, such as PrEP and SSPs

Respond

quickly to potential HIV outbreaks

Routine healthcare visits are a critical opportunity to scale up sexual health assessments and PrEP delivery

VOLITION study


Phase IIIb, multicentre, non-randomised, parallel-group, open-label study

Suppression phase Maintenance phase

W16 Day of choice Baseline

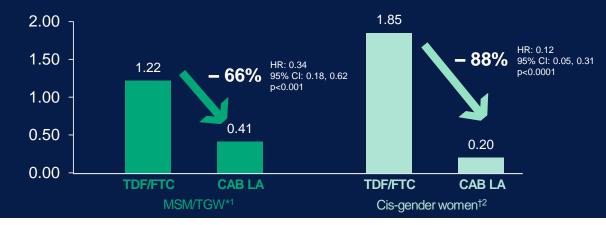
PSPs* and SSPs were surveyed at baseline to assess experience of clinical discussions around sexual wellness and HIV prevention

These findings demonstrate that there are missed opportunities in healthcare for HIV prevention in those who have acquired HIV

^{*}PSPs were adults naive to antiretroviral therapy receiving initial treatment

PrEP-related adverse events not reported.

DISCUSSION


CAB LA PrEP demonstrated superior efficacy to oral TDF/FTC and has a reassuring safety and injection tolerability profile

Superior efficacy versus daily oral TDF/FTC

CAB LA PrEP has shown superior efficacy to oral TDF/FTC;^{1–5} in two large international head-to-head Phase IIb/III studies, 0.2% of cis-gender men/TGW* and 0% of cis-gender women[†] experienced seroconversion with on-time injections

CAB LA PrEP has demonstrated >99% effectiveness for HIV prevention in **over 3 years of real-world data** in diverse populations, 6–12 including data on pregnancy outcomes

CAB LA PrEP has low potential for clinically significant **DDIs**¹³

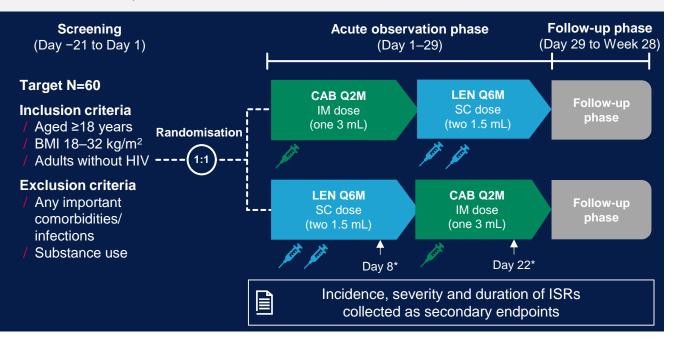
CAB LA PrEP injections are generally well tolerated, highly acceptable and discontinuations due to ISRs were rare in clinical trials^{1,14,15}

Ongoing implementation studies have shown that CAB LA PrEP users benefit from 2-monthly clinic visits¹⁶

Landovitz RJ, et al. N Engl J Med 2021;385:595–608 (and suppl. Appendix);
 Delany-Moretlwe S, et al. Lancet 2022;399:1779–89
 Marzinke MA, et al. Antimicrob Agents Chemother 2023;67:e00063–23;
 Landovitz RJ, et al. Lancet HIV 2023;10:e767–78
 Eshleman SH, et al. J Infect Dis 2022;225:1741–9;
 Delany-Moretlwe S, et al. AIDS 2022. Oral OALBX0108
 Mills AM, et al. IDWeek 2024. Oral 508;
 Ramgopal M, et al. IDWeek 2024. Oral 505;
 Heise MJ, et al. HIVR4P 2024. Oral OA0503
 Turner C, et al. HIVR4P 2024. Poster 01725;
 Hazra A, et al. CROI 2024. Poster 1241;
 Traeger M, et al. CROI 2025. Oral 191
 Apretude US Prescribing Information, April 2025;
 Delany-Moretlwe S, et al. Lancet 2022;399:1779–89
 Boles J, et al. EACS 2025. Poster MeP20.4.LB;
 Holder H, et al. IDWeek 2024. Poster P-1424

Following a single dose of each product, participants report ISRs from CAB LA PrEP injections as more acceptable than LEN LA injections

CLARITY study


EACS 2025

Open-label, randomised crossover study (CAB IM and LEN SC, one dose each) in 63 adults without HIV (single-centre in the US)

Primary endpoint was local reaction acceptability 7 days after each injection using questions from the 21-item PIN questionnaire*

Acceptability of ISRs

Proportion of participants reporting that local reactions were "totally or very acceptable" (PIN) 7 days post injection

CAB LA[†]

69%

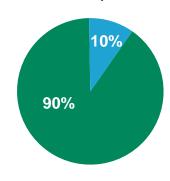
"totally or very acceptable" (42/61)‡

LEN LA[†]

48%

"totally or very acceptable" (29/60)‡

Results statistically significant in a post-hoc analysis (P=0.019)


Participant preference

Day 22 (N=60)§¶

The Majority of Participants Preferred CAB Injections
Over LEN Injections

CAB LA preference (90%; n=54)

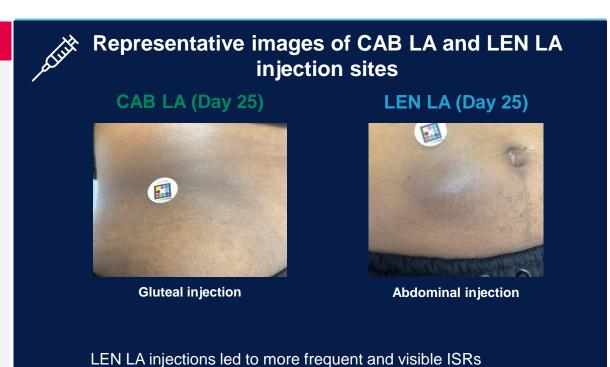
- / Less pain during injection administration (n=40)
- Less pain or soreness after injection administration (n=33)
- Duration of injection nodules or swelling (n=31)
- / Size of injection nodules or swelling (n=30)

LEN LA preference (10%; n=6)

- Less pain or soreness after injection administration (n=5)
- / Duration of injection nodules or swelling (n=3)
- / Size of injection nodules or swelling (n=3)
- Fewer side effects (n=3)

^{*}Primary endpoint: PIN acceptability domain (assessed 7 days post injection on Day 8 and Day 22); †Seven days post injection (data from Days 8 and 22 are combined); ‡Participants with available data §The question 'Which medication regimen do you prefer' from the Study Medication Preference Questionnaire was used to assess preference on Day 22; ¶Participant preferences were assessed only at Day 22, after all participants had received both CAB LA and LEN LA injections; participants were allowed to select multiple reasons for their stated preference, the top four reasons for preference are listed IM. intramuscular: LEN. lenacapavir: PIN. Perception of Injection: Q6M. every 6 months: SC. subcutaneous

Local reactions from CAB LA PrEP injections were less frequent and visible than LEN LA


CLARITY study

EACS 2025

LEN LA injections led to more visible ISRs versus CAB LA injections

- / No serious AEs or discontinuations due to drug-related AEs were reported
- / A total of **36 and 221 visible ISR events** were reported by participants receiving **CAB LA and LEN LA, respectively** (ISR events were defined as any visible nodule, induration, swelling, erythema or hyperpigmentation)
- / 49% of participants receiving CAB LA and 100% of participants receiving LEN LA experienced a physical non-pain ISR event
 - / 33% of participants receiving CAB LA and 74% of participants receiving LEN LA experienced nodules

Following single doses of LEN LA and CAB LA, there were differences in ISR acceptability and tolerability with participants and HCPs favoring CAB LA

after a single dose

AE, adverse events

Boles J, et al. EACS 2025. Poster MeP20.4.LB

DISCUSSION

CAB LA PrEP users benefit from regular clinic visits

IDW 2025

OPERA¹

HIV-negative adults who received ≥1 CAB LA injection or ≥1 oral PrEP prescription in the OPERA cohort* were included

STI testing was 1.5 times more frequent for those receiving CAB LA PrEP (IR: 5.18; 95% CI: 5.02, 5.35) versus oral PrEP (IR: 3.42; 95% CI: 3.39, 3.44)

Increased clinical contact from regular CAB LA PrEP injection visits may encourage more frequent STI testing

EBONI²

130 Black women from 19 clinics completed surveys on implementing CAB LA PrEP

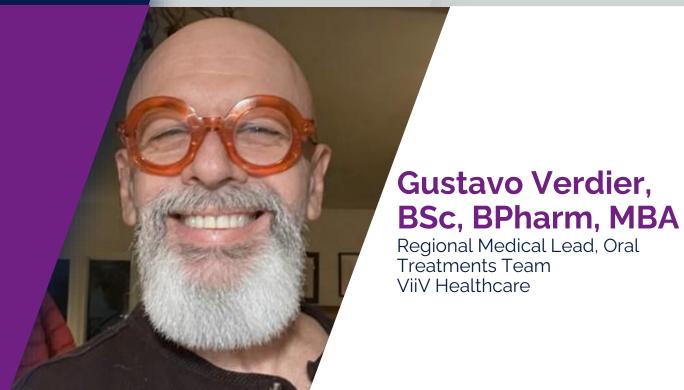
Interim (4-month)
experiences among
Black CGW and TGW

IDW 2025

According to self-completed electronic surveys, Black women reported that the following were **acceptable or very acceptable** while receiving CAB LA:

- / Frequency of HIV testing (95%)
- / Frequency of STI testing (94%)

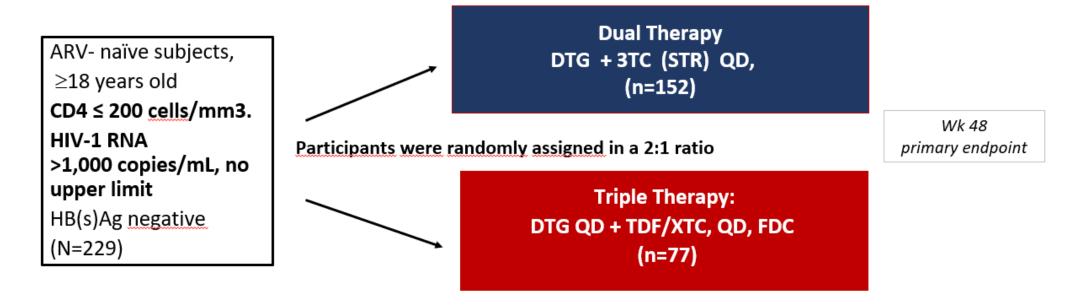
Ancillary benefits observed in OPERA and EBONI were improved engagement in PrEP services and broader sexual health care utilisation


^{*}Enrolled in the OPERA cohort 21 Dec 2021 to 30 Jun 2023 and were followed through 30 Jun 2024

DISCUSSION

Dovato

Subgroup Analysis of Dolutegravir/Lamivudine in ART-Naive Adults Living With HIV With CD4 Counts Below 200 Cells/mL: Results From the DOLCE Study


C Brites,^{1,2} M Figueroa,³ D Cecchini,⁴ A Ramalho,⁵ JL Francos,⁶ M Lacerda,⁷ MJ Rolon,⁸ J Valdez Madruga,⁹ E Sprintz,¹⁰ T Newman Lobato Souza,¹¹ P Parenti,¹² D Converso,³ G Miernes,³ O Sued,³ P Cahn³

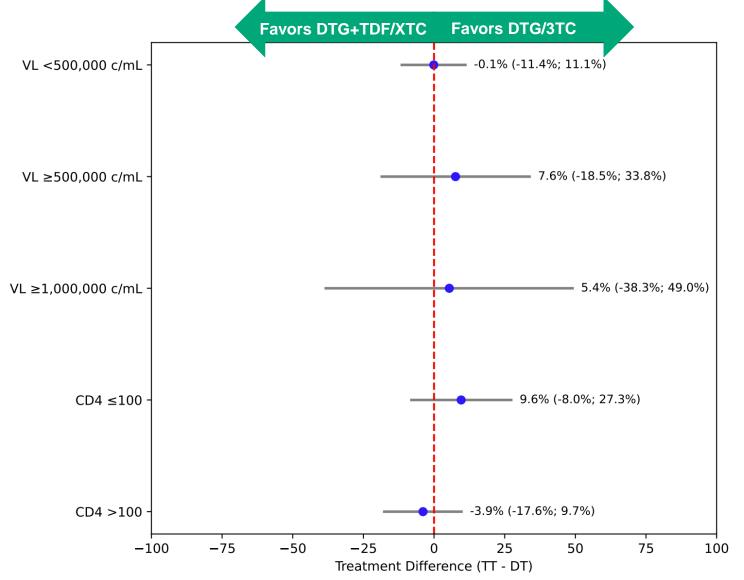
¹Fundação Bahiana de Infectologia, Salvador, Bahia, Brazil; ²Universidade Federal da Bahia/EBSERH, Salvador, Bahia, Brazil; ³Fundacion Huesped, Ciudad de Buenos Aires, Argentina; ⁴Hospital General de Agudos Dr. Cosme Argerich, Ciudad de Buenos Aires, Argentina; ⁵Hospital Geral de Nova Iguaçu, Nova Iguaçu, Rio de Janeiro, Brazil; ⁶Hospital de Infecciosas Francisco Javier Muñiz, Ciudad de Buenos Aires, Argentina; ⁷Fundação de Medicina Tropical do Amazonas, Manaus, Brazil; ⁸Hospital Juan A. Fernandez, Ciudad de Buenos Aires, Argentina; ⁹Centro de Referência e Treinamento DSTAIDS, Sao Paulo, Brazil; ¹⁰Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; ¹¹Instituto de Infectologia Emílio Ribas, San Pablo, Brazil; ¹²Instituo CAICI, Rosario, Santa Fe, Argentina

Study Design

✓ Phase IV, exploratory, open-label, multicenter study including naïve PLWHIV in 11 sites in Argentina and Brazil

Randomization was stratified by country and by plasma HIV-1 RNA at screening (> or ≤ 100.000 copies/mL)

Treatment period: 48 weeks, followed by a 4 week period to document late adverse events



Baseline Characteristics

	Total	Triple therapy (TT)	Dual therapy (DT)
	n = 230	n = 77	n = 153
CD4 count			
CD4 cell count, cells/mL:	116	128	109
(median-IQR)	(53.3- 188)	(58.5 - 200)	(48.8 - 177)
CD4%	8	10	8
[Median (IQR)]	(4, 13)	(4.1, 13)	(4, 12)
CD4 cells count < = 100 cells/mL	98 (43.4%)	29 (39.2%)	69 (45.4%)
HIV RNA			
HIV-1 viral load (copies/mL)	151,000	137,084	180,000
[Median (IQR)]	(49,027.5, 446,947)	(43,901 - 419,628)	(57,309 - 468,691)
HIV RNA, log 10,(median-IQR)	5 (4.7-6)	5 (4.6- 6)	5 (4.8- 6)
HIV RNA, >100,000 c/mL,(n, %)	141 (61.3%)	47 (61.0%)	94 (61.4%)
HIV RNA, =>500,000 c/mL,(n, %)	53 (23.0%)	18 (23.4%)	35 (22.9%)
HIV RNA = > 1,000,000 copies/mL(n, %)	23 (10.0%)	7 (9.1%)	16 (10.5%)
Viral Subtype			
• Subtype B	143 (63.0%)	51 (68.0%)	92 (60.5%)
• Subtype BF	62 (27.3%)	18 (24.0%)	44 (28.9%)
Other subtypes	17 (7.5%)	4 (5.3.%)	13 (8.5%)

Proportion of Participants With Plasma HIV-1 RNA <50 Copies/mL at Week 48. Snapshot Outcomes by Subgroups - ITT-E Population Efficacy

DISCUSSION

Pipeline

Paula Teichner, PharmD

Regional Medical Lead, LAI for Treatment and Pipeline ViiV Healthcare

ViiV Portfolio Pioneers in innovation¹

Areas of focus

ULA treatment
Self-administered treatment
ULA PrEP

First approved 2DRs^{5,6}

Dovato: Dolutegravir/lamivudine Juluca: Dolutegravir/rilpivirine

First second-generation INSTI⁴

Tivicay: Dolutegravir Triumeq: Dolutegravir/abacavir/lamivudine

Legacy ARV drug portfolio:2,3

Zidovudine, abacavir, lamivudine, maraviroc

Search for remission and cure

First long-acting injectable for PrEP8

Apretude: Cabotegravir

First complete long-acting treatment regimen¹

Vocabria + Rekambys Cabenuva: Cabotegravir + rilpivirine

First attachment inhibitor for HTE⁷

Rukobia: Fostemsavir

Pipeline*1,9

INSTIs

CAB-ULA VH4367310 (VH-310) VH4524184 (VH-184)

Third-generation

bNAbs

VH3810109 (VH-109)

- N6LS

VH4527079 (VH-7079)

Bi-specific

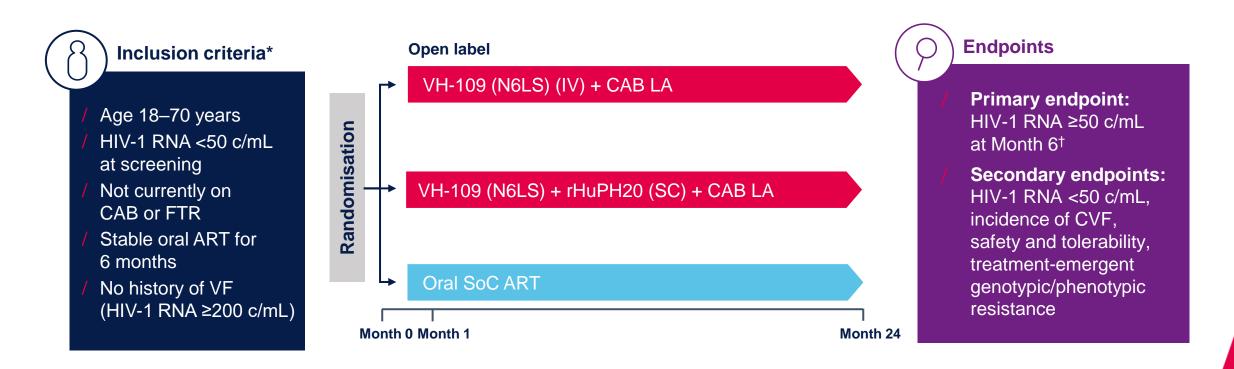
Capsid inhibitor

VH4011499 (VH-499)

Paediatric formulations¹

Tivicay PD: Dolutegravir

Triumeq PD: Dolutegravir/abacavir/lamivudine


Cabotegravir*

ViiV Pipeline Innovative long-acting partners: bNAbs

EMBRACE study design – Part 1: VH-109 (N6LS) Q4M + CAB Q1M

Phase IIb, multicentre, randomised, open-label study comparing the efficacy, safety, PK and tolerability of VH-109 (N6LS), administered either IV or as an SC infusion with rHuPH20, in combination with CAB LA to SoC in virologically suppressed adults

^{*}Participants were tested for viral phenotypic sensitivity to VH-109 based on IC_{90} of $\leq 2 \mu g/mL$ and a maximum percent inhibition >98% using the monogram PhenoSense monoclonal antibody assay on sample obtained at a screening visit †Number of participants with plasma HIV-1 RNA ≥ 50 c/mL per snapshot algorithm at Month 6 CVF, confirmed virologic failure; FTR, fostemsavir; IC_{90} , 90% maximal inhibitory concentration rHuPH20. recombinant human hyaluronidase PH20: VF. virologic failure

DISCUSSION

Q&A

- Please use the Q&A function to submit comments and questions
- If we are unable to get to your question, we will ensure to follow up with you!

FEEDBACK

Tell us what you think of today's program

Thank You!

Visit viivhcmedinfo.com to:

- Search scientific and medical information for ViiV Healthcare medicines
- / Review ViiV Congress presentations and posters
- / Locate a ViiV Medical Science Liaison
- / Chat live with ViiV Healthcare Professionals*
- / Or call us at 1-888-226-8434*

*Available weekdays from 8am—6pm EST

MEDICAL INFORMATION WEBSITE

viivhcmedinfo.com

SCAN TO VISIT OUR WEBSITE