

Pregnancy and Neonatal Outcomes Following Prenatal Exposure to Cabotegravir (CAB): Data from The Antiretroviral Pregnancy Registry (APR)

<u>Vani Vannappagari</u>¹, Jessica D. Albano², Leigh Ragone¹, Angela E. Scheuerle³, Lynne Mofenson⁴, William R. Short⁵, Claire Thorne⁶, Nicole Carneal-Frazer², Taylor Cook², Chris Zhang², Kimberley Brown¹, Annemiek de Ruiter⁷

¹ViiV Healthcare, Durham, NC, USA, ²Syneos Health, Morrisville, NC, USA, ³University of Texas Southwestern Medical Center, Dallas, TX, USA, ⁴Elizabeth Glaser Pediatric AIDS Foundation, Silver Spring MD, USA, ⁵The Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA, ⁶University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK, ⁷ViiV Healthcare, London, UK

Disclosures

Dr. Vani Vannappagari is a full-time employee of ViiV Healthcare.

Antiretroviral Pregnancy Registry (APR)

- The APR is an international, prospective exposure-registration cohort study based on voluntary reporting by health-care providers (HCPs), ongoing since 1989
 - Overseen by an independent Advisory Committee
 - Currently 27 sponsoring ARV manufacturers
 - Covers ARVs used for HIV treatment, prevention, and HBV treatment,
 - While the pregnancies reported are predominantly from the US, the APR has received reports from 75 countries
- Designed to assist clinicians and pregnant individuals in weighing potential risks and benefits of ARV use during pregnancy
- Primary Objective:
 - Monitor prenatal exposures to ARV drugs to detect potential increase in the risk for birth defects and provide early warning signals of major teratogenicity

Primary AnalysisAPR Data through 31 Jul 2024

Prospectively reported pregnancies

Timing, Dosage, Type of Antiretroviral Drug Use, Concomitant Exposures, and Pregnancy Outcome/Birth Defect at Time of Delivery

APR Primary Analysis

Prevalence = number of defects number of live births

Compared to:

MACDP* 3/100 live births

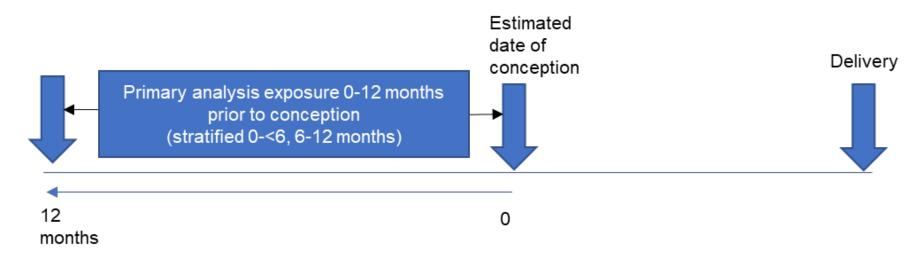
TBDR** 4/100 live births

1st trimester vs. 2nd & 3rd trimester

^{*} MACDP = Metropolitan Atlanta Congenital Defects Program; TBDR** = Texas Birth Defects Registry

Sample Size is Dependent on Defect Prevalence in General Population

 200 first trimester exposures are needed to detect a 2-fold ↑ in overall birth defects (prevalence 3%)



Watts DH. Curr HIV/AIDS Rep 2007;4:135-140

CAB-LA in Pregnancy

- CAB+RPV LA
 - The only complete LA injectable regimen approved for treatment of HIV in virologically suppressed PWH
- CAB LA
 - The first LA agent approved for persons who could benefit from PrEP
- Given long-acting nature of CAB-LA, an individual could have stopped CAB-LA months before
 getting pregnant but still be "exposed" at conception, complicating collection of exposure data.

Overall APR Birth Defect Rates

The 24,443 evaluable pregnancies resulted in 24,869 fetal outcomes including 23,129 live birth (including 419 multiple births).

Trimester of Earliest Exposure	Live Births (N)	Birth Defects (N)	Prevalence Ratio	95% CI	Relative Risk (95% CI)	
First Trimester	12,853	382	3.0%	2.7, 3.3	1.05	
Second/Third Trimester	10,273	292	2.8%	2.5, 3.2	(0.90, 1.21)	
Any Trimester	23,129	676	2.9%	2.7, 3.1		

Demographic Characteristics of Pregnant Individuals Exposed to CAB LA (data through July, 2024)

Total Pregnancies Reported	42
Indication for CAB LA at Start of Pregnancy	
HIV Treatment	32 (76.2%)
HIV Prevention	
Pre-Exposure Prophylaxis (PrEP)	10 (23.8%)
CD4+ T-cell Categories at Start of Pregnancy	
≥ 500 cells/µL	15 (35.7%)
200-499 cells/µL	5 (11.9%)
<200 cells/µL	2 (4.8%)
Missing / Unknown	20 (47.6%)

13th IAS Conference on HIV Science; July 13-17, 2025; Kigali, Rwanda

Demographic Characteristics of Pregnant Individuals Exposed to CAB LA

Total pregnancies, N	42
Maternal age at conception (years)	
Mean	29.5
Median	29
Range, min-max	21-39
Country of reporting, n (%)	
USA	21 (50.0%)
Uganda	7 (16.7%)
Kenya	4 (9.5%)
UK	2 (4.8%)
Russia	2 (4.8%)
Spain	2 (4.8%)
South Africa	2 (4.8%)
Canada	1 (2.4%)
Zimbabwe	1 (2.4%)
Timing of earliest exposure to CAB, n (%)	
1st trimester	1 (2.4%)
2nd trimester	1 (2.4%)
3rd trimester	1 (2.4%)
Pre-conception CAB exposure (for those not on CAB at the time of	
conception)	
0-6 months prior to conception	27 (64.3%)
6-12 months prior to conception	12 (28.6%)

Pregnancy Outcomes

Total Outcomes, N	43
Live births	35* (81.4%) infants
Stillbirths	1 (2.3%)
Spontaneous abortions	3 (7.0%)
Induced abortions	4 (9.3%)

^{*} One twin birth

13th IAS Conference on HIV Science; July 13-17, 2025; Kigali, Rwanda

Neonatal Outcomes With Prenatal Exposure to CAB (Among Singleton, Live Births Without Defects, N=33)

With only pre-conception exposure

	Overall	1st trimester earliest exposure	2nd trimester earliest exposure	3rd trimester earliest exposure	Earliest exposure 0-6 months prior to conception	Earliest exposure 6-12 months prior to conception
Number of Live, Singleton Newborns Without Defects	33	1	1	1	23	7
Gestational age						
≥37 weeks	27 (81.8)	1 (100)	1 (100)	1 (100)	20 (87.0)	4 (57.1)
<37 weeks (preterm)	5 (15.2)	0	0	0	3 (13.0)	2 (28.6)
Missing	1 (3.0)	0	0	0	0	1 (14.3)
Birth weight						
≥2500 grams	22 (66.7)	1 (100)	1 (100)	1 (100)	16 (69.6)	3 (42.9)
<2500 grams (LBW)	3 (9.1)	0	0	0	2 (8.7)	1 (14.3)
<1500 grams (VLBW)	3 (9.1)	0	0	0	2 (8.7)	1 (14.3)
Missing	5 (15.2)	0	0	0	3 (13.0)	2 (28.6)

Birth Defect Case – Among live births (n=35)

N=1	Birth Defect	Timing of Earliest Exposure to CAB	Other ARV Drug Exposures/ Timing of Earliest Exposure	Other Exposures	Pregnancy Outcome	Gestational Age/Birth Weight
1	Congenital Ptosis	6-12 months prior to conception	Rilpivirine/prior to conception	Folic acid	Live birth	37 weeks 2380 grams
		·	Darunavir+cobicistat+ emtricitabine+ tenofovir alafenamide/ Unknown			

Summary of Results

- 42 pregnancies with exposure to CAB LA resulted in 43 outcomes, including 35 live births
 - 39 had pre-conception exposure to CAB, 1 during the 1st trimester, 1 during the 2nd trimester, and 1 during the 3rd trimester
- Among 35 live births, one birth defect of congenital ptosis was reported

Among 33 singleton, live births without defects, 5 were preterm, 3 had LBW and 3 had VLBW

13th IAS Conference on HIV Science; July 13-17, 2025; Kigali, Rwanda

Conclusions

- The data, though not definitive, shows no significant concern
 - The limited number of pregnancies warrants cautious interpretation
- These data complement the PK (n=50) and safety data (n=325) reported from pregnancies from the HPTN 084 (Cab LA for PrEP) pregnancy sub-study
- Subsequent reports with further data accrual on CAB usage during pregnancy will allow more detailed analyses of the pregnancy outcomes
- Healthcare providers are encouraged to continue to report pregnancies with ARV exposures prospectively to the APR, especially those involving newer ARVs [www.APRegistry.com]

Advisory Committee Consensus

We reviewed all reported defects from the prospective registry, informed by clinical studies and retrospective reports of antiretroviral exposure. We find no significant increases in frequency of birth defects with first trimester exposures when organogenesis occurs compared to second and third trimester exposures. In addition, we have not identified any defect pattern. While the Registry population exposed and monitored to date is not sufficient to detect an increase in the risk of relatively rare defects, these findings should provide some assurance for patient counseling and formulating patient care plans for pregnant individuals or those considering pregnancy. Potential limitations of registries should be recognized.

The Registry is ongoing. Given the use of new therapies about which data are still accumulating, health care providers are strongly encouraged to report all eligible people to the Registry at SM_APR@APRegistry.com via the data forms available at www.APRegistry.com

Acknowledgements

- Pregnant individual contributing data to the Registry
- The outstanding efforts of all the HCPs submitting cases to the APR, especially the dedication and participation of our 100% reporting Health Care Providers.
- The valuable contributions of the APR Steering Committee and
- The staff at the Coordinating Center at Syneos Health

Independent Advisory Committee Members

- Cynthia Holcroft-Argani, MD, Johns Hopkins Medical Center
- Martina Badell, MD, Emory University Hospital Midtown Perinatal Center
- Karen Beckerman, MD, Zucker School of Medicine at Hofstra University, Staten Island University Hospital
- Tara DeYampert, MD, National Institutes of Health
- Elizabeth Gray, MPH, Division of Birth Defects and Infant Disorders, Centers for Disease Control & Prevention
- Ciarra Coven, MS, The Well Project
- Lynne Mofenson, MD, Elizabeth Glaser Pediatric AIDS Foundation
- Angelina Namiba, 4M Network of Mentor Mothers
- Andreas Pikis, MD, Food and Drug Administration
- Rosemary Ramroop, Johns Hopkins University
- William Short, MD, MPH, AAHIVS, The University of Pennsylvania
- Claire Thorne, PhD, Great Ormond Street Institute of Child Health, University College London

Disclaimer

This content was acquired following an unsolicited medical information enquiry by a healthcare professional. Always consult the product information for your country, before prescribing a ViiV medicine. ViiV does not recommend the use of our medicines outside the terms of their license. In some cases, the scientific Information requested and downloaded may relate to the use of our medicine(s) outside of their license.