Christoph Wyen, 1 Sebastian Noe, 2 Celia Jonsson-Oldenbüttel, 2 Jan Borch, 3 Kevin Ummard-Berger, 4 Elena Rodríguez, 5 Marcel Lee, 6 Stefan Scholten, 7 Martha Schneider,⁸ Kathrin M. Dymek,⁸ Bernd Westermayer,⁹ Jenny Scherzer⁸

Outcomes From People With HIV-1 in the German CARLOS Study

¹Praxis am Ebertplatz, Cologne, Germany; ²MVZ München am Goetheplatz, Munich, Germany; ³Praxis Goldstein, Berlin, Germany; ⁴UBN/Praxis, Berlin, Germany; ⁵Praxis Dr. Rump, Freiburg, Germany; ⁶MVZ München am Isartorplatz, Munich, Germany; ⁷Praxis Hohenstaufenring, Cologne, Germany; ⁸ViiV Healthcare, Munich, Germany; ⁹GSK, Munich, Germany

code for a copy of

Key Takeaways

- We present the Month 24 outcomes for CARLOS, a non-interventional, 3-year, multicenter, prospective study evaluating outcomes for PWH receiving daily oral ART who switched to **CAB + RPV LA Q2M in routine clinical care in Germany.**
- CAB + RPV LA Q2M demonstrated high rates of virologic suppression, with low rates (2%) of virologic failure in the first 24 months following switch from daily oral ART.
- The majority of participants were adherent to injections in routine clinical practice, with 94% of injections administered within the dosing window or earlier.
- Switching to CAB + RPV LA Q2M was well tolerated and improved treatment satisfaction over 24 months, with most (99%) participants preferring LA therapy, primarily due to convenience and alleviations of adherence concerns.

Background

- Cabotegravir plus rilpivirine (CAB + RPV) is recommended by treatment guidelines for the maintenance of HIV-1 virologic suppression in people living with HIV (PWH) as the first complete long-acting (LA) regimen.^{1–3}
- CAB + RPV LA offers less frequent dosing than daily oral antiretroviral therapy (ART) and is recognized by international treatment guidelines for its potential to improve individual quality of life.1
- The noninferior efficacy of CAB + RPV LA has been established in five large Phase 3/3b randomized noninferiority trials;4-8 however, real-world data help to better understand utilization and clinical outcomes among broader groups of PWH.
- CARLOS is a non-interventional, 3-year, multicenter, prospective study in PWH on suppressive daily oral ART who switched to CAB + RPV LA dosed every 2 months (Q2M) via gluteal intramuscular injections in routine clinical care in Germany.
- In CARLOS, CAB + RPV LA maintained high levels of effectiveness and was well tolerated in the first 12 months following switch from daily oral therapy to CAB + RPV LA.9

CAB + RPV I A

Here, we present outcomes at Month 24 of the CARLOS study.

Methods

- In line with the European label, eligible participants had documented HIV-1 infection and were virologically suppressed (HIV-1 RNA <50 c/mL) on a stable ART regimen. 10,11 Participants were excluded if they had present or past evidence of viral resistance to, or prior treatment failure with, non-nucleoside reverse transcriptase inhibitors (NNRTIs) or integrase strand transfer inhibitors (INSTIs). 10,11
- The intention-to-treat analysis population included participants who reached the Month 24 window, as well as those who discontinued treatment but would have reached Month 24 at the time of data cut-off (November 4, 2024).
- Participant demographic data were collected from medical records during routine clinical care, and patient-reported outcomes were assessed via questionnaires.
- Endpoints assessed at Month 24 included:
- Proportion of participants with virologic suppression (HIV-1 RNA <50 c/mL).
- Proportion of participants with virologic non-response (HIV-1 RNA ≥50 c/mL).
- Incidence of protocol-defined virologic failure (PDVF; two consecutive
- HIV-1 RNA ≥200 c/mL or a single HIV-1 RNA ≥200 c/mL followed by discontinuation for any reason).
- · Adherence to injection schedule
- Tolerability.
- Patient-reported outcomes:
- Reasons for switch, treatment satisfaction (12-item HIV Treatment Satisfaction Questionnaire status version [HIVTSQs]) and treatment preference (preference questionnaire [single question]).
- A post hoc analysis using a Wilcoxon signed-rank test was performed to determine the change in total treatment satisfaction (HIVTSQs) from baseline to Month 24 for participants who completed the survey at both timepoints.
- For exploratory questions, the number of participants included in the analysis reflects the number of participants who completed the survey at the timepoint of interest.

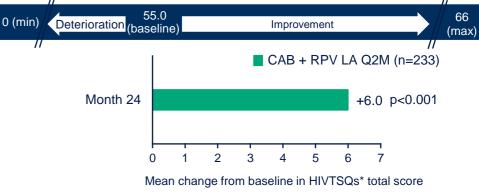
Results

Table 1. Baseline Characteristics

n (%) unless stated otherwise	Q2M	n
Age		
Median years (IQR)	42 (35–50)	
<50 years	260 (74)	351
50–65 years	88 (25)	351
>65 years	3 (<1)	
Sex at birth		
Male	332 (95)	351
Baseline risk factors		
BMI ≥30 kg/m ²	35 (13)	276
HIV-1 subtype A6/A1	3 (1)	214
Baseline resistance test		
No current/historical genotypic resistance	103 (29)	351
test at baseline	103 (29)	331
Comorbidities with a prevalence of ≥25%		
Mental/behavioral disorders	143 (41)	351
Metabolic disorders	96 (27)	551
HIV history		
Time on oral ART before switch,	7.9 (4.3–11.4)	310
median years (IQR)	7.5 (4.5 11.4)	310
PWH with ≥3 prior ART regimens	145 (51)	284
(excluding current daily oral)	140 (01)	204
ART regimen prior to switch		
(in ≥10% of participants)		
BIC/FTC/TAF	80 (23)	351
DTG/3TC	61 (17)	
DTG/3TC/ABC	36 (10)	
3TC, lamivudine; ABC, abacavir; BIC, bictegravir; BMI, body mass in-	dex: DTG_dolutegravir: FTC_emt	ricitabine:

- The analysis population comprised 351 eligible participants who received ≥1 CAB + RPV LA injections (**Table 1**).
- A total of 38 participants had one known baseline risk factor (BMI ≥30 kg/m² or HIV-1 subtype A6/A1); no participants had two known risk factors. 12
- Additionally, a resistance test was not available for nine of these participants at baseline.

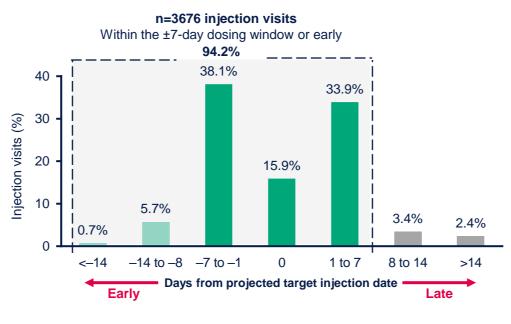
Table 2. Summary of Participants With PDVF from Month 12 to 24*


	Participant 1	Participant 2		
Sex at birth, age (year)	Male, 43	Male, 37		
Baseline BMI (kg/m²)	20	24		
HIV-1 subtype	В	В		
Historic resistance test available	No INI/NNRTI resistance reported at BL	No INI/NNRTI resistance reported at BL		
Time to failure (months); injections received	15; 9 injections	17; 13 injections		
Viral load at SVF/PDVF (c/mL)	667/10,200	421/446		
RAMs at failure	NNRTI: K101P INSTI: E138K, Q148R	None		
On time injections	Yes	Yes		
ART following CAB + RPV LA discontinuation	DRV/COBI/FTC/TAF	NA; resuppressed on CAB + RPV LA		
*Previously reported: One additional participant was excluded from the analysis population for off-label use of CAB + RPV LA (discovered <i>post hoc</i> ; prior virologic failure with an agent of NNRTI class) had PDVF with NNRTI RAMs (K101E Y181C, G190A) detected at failure. The participant had HIV-1 subtype C, a BMI of 20 kg/m², and on-time injections. COBI, cobicistat; DRV, darunavir; INI, integrase inhibitor; RAM, resistance-associated mutation; SVF, suspected virologic failure.				

- Five participants (n=5/351; 1.4%) met the PDVF criterion through Month 12 and have been reported previously.9
- For three participants, NNRTI resistance-associated mutations (RAMs; E138K, K101E, Y181C) and/or INSTI RAMs (Q148R, T97A, E138K, N155H) were observed at failure.
- Two additional participants met the PDVF criterion between Month 12 and Month 24 (Table 2).
- For one participant, PDVF classification was based upon two viral load measurements ≥200 c/mL taken 2 days apart at injection 10. The participant then resuppressed on CAB + RPV LA at subsequent visits (with all 3 viral load measurements <20 c/mL) and successfully completed the study at injection 19.
- The other participant had NNRTI resistance-associated mutations (RAMs; K101P) and INSTI RAMs (E138K, Q148R) at failure.

 The most common (≥3 events) non-serious drug-related adverse events, excluding injection site reactions (ISRs), were pyrexia (n=20), pain (n=10), nausea (n=5), pain in extremity (n=4), fatigue (n=3), headache (n=3), and sleep disorder (n=3).

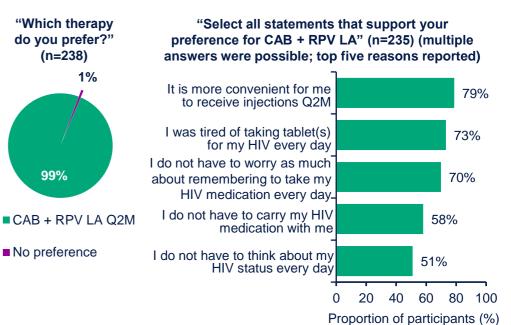
- Most ISRs were Grade 1–2 (n=366/370; 99%).
- Pain was the most common ISR reported, with few participants (5%) discontinuing due to injection-related reasons (Table 3).


Figure 3. Change in Total Treatment Satisfaction (HIVTSQs) at Month 24

*HIVTSQs: 12-item version; range per item 0-6, where 0 = "very dissatisfied" and 6 = "very satisfied." Total score = sum of item 1-11, item 12 presented separately; range for total score 0-66; positive changes indicate improvement. HIVTSQs item 12 mean change, -0.3. For participants who completed the HIVTSQs at baseline and discontinuation (n=13: mean total score, 56.2 and 45.1, respectively), a decrease in treatment satisfaction (mean change, -11.1)

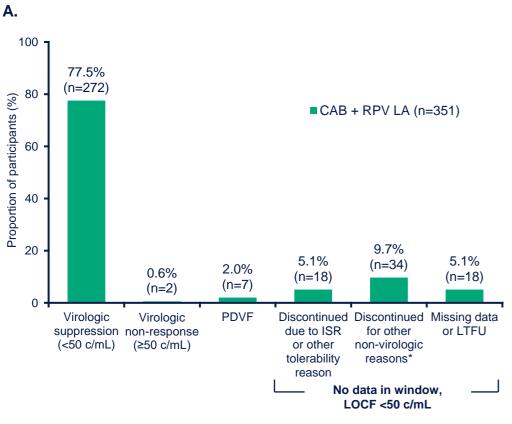
- For participants who completed the HIVTSQs at baseline (n=233; mean total score, 55.0) and Month 24 (n=233; mean total score, 61.0), a statistically significant increase in total score was observed (mean change, +6.0; p<0.001) (**Figure 3**).
- Mean change in HIVTSQs total score was greater than half of the baseline standard deviation (10.0), meeting the threshold for minimum clinically important difference.¹⁴

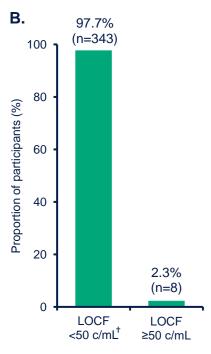
Figure 2. Adherence to ±7-day Dosing Window (Injections 2–13)



- 94% (n=3464/3676) of CAB + RPV LA maintenance injections were administered within the dosing window (88%,n=3231/3676) or earlier (6%, n=233/3676); 6% (n=212/3676) occurred late (**Figure 2**).
- The most common reasons for injection deviations were missed appointments (n=113) and other reasons (n=77).
- missed doses for a median (IQR) duration of 3.1 weeks (1.4–4.9).

Oral therapy was administered on 22 occasions to cover delayed/


- The most frequently used oral therapy regimens were CAB + RPV (n=6), BIC/FTC/TAF (n=4), and DTG/3TC (n=3).
- Ten participants received new loading doses due to delayed injections.


Figure 4. Treatment Preference and Supporting Reasons at Month 24

- At Month 24, CAB + RPV LA was preferred by 99% (n=235/238) of participants responding to the preference questionnaire; 1% (n=3/238) reported no preference (Figure 4).
- Supporting reasons for LA treatment preference included convenience (n=185/235 [79%]), being tired of taking tablet(s) every day (n=172/235 [73%]), and not having to worry about remembering to take HIV medicine (n=164/235 [70%]).
- For the 13 participants who responded to the preference questionnaire at treatment discontinuation, 69% (n=9/13) indicated a preference for daily oral HIV medication with the remaining participants preferring CAB + RPV LA (31% [n=4/13]); supporting reasons for daily oral therapy preference included aversion to injection (78% [n=7/9]).

Figure 1. Virologic Outcomes at Month 24

participants maintained virologic suppression and 19.9% (n=70/351) discontinued or had no data in window with last available viral load <50 c/mL (LOCF; Figure 1A).

At Month 24, 77.5% (n=272/351) of

- When examining the last known viral load at Month 24 or at discontinuation (LOCF), 97.7% (n=343/351) of participants maintained virologic suppression (Figure 1B).
- *Preferred oral ART, n=16; appointment compliance concerns, n=3; found more frequent visits inconvenient, n=2; other reason, n=9; withdrawal of consent, n=3; death, n=1, †Includes one participant who met PDVF and resuppressed on CAB + RPV LA at subsequent
- ISR, injection site reaction; LOCF, last observation carried forward; ■ CAB + RPV LA Q2M (n=351) LTFU, lost to follow-up.

Table 3. Drug-related AEs and ISRs Through Month 24 CAB + RPV

Drug-related AEs (excluding ISRs)	LA Q2M n=351		LA Q2M (M0-M12)	LA Q2M (M12-M24)
Drug-related AEs, n	54	ISRs	n=351	n=351
,		Number of injections, n	2294	1733
Grade 1–2 events	52	ISR events, n	268	102
Grade 3 events	2	Pain, n (% of injections)‡	233 (10)	81 (5)
Serious drug-	9 1"	Nodule, n (% of injections)‡	13 (<1)	2 (<1)
related AEs, n		Swelling, n (% of injection)‡	11 (<1)	0
Discontinuation due to drug-related AEs,	6 [†]	Grade 3 events, n (% of ISR events)	4 (1)	0
n (%)		Median duration (IQR), days	3 (2–6)	3 (2–6)
		Discontinuation due to ISRs,	13 (4)§	3 (<1)¶

*Anxiety disorder, n=1. †Headache (Grade 2, n=1), syncope (Grade 2, n=1), anxiety disorder (Grade 3, n=1), pyrexia (Grade 2, n=2), and joint swelling/arthralgia (Grade 3, n=1). †Top 3 most commonly reported ISRs listed. Participants may have multiple ISR events following a single injection. \$Includes 10 participants who withdrew with the primary reasons as no longer tolerating injection pain/ISRs. Three additional participants withdrew citing injection-related reasons/ISRs as a secondary reason (patient prefers oral ART, n=1; safety/tolerability concerns other than ISRs, n=1; withdrawal of consent, n=1). *All three participants withdrew due to no longer tolerating injection pain/ISR.

Conclusions

- In the real-world CARLOS study, CAB + RPV LA was highly effective and was well tolerated 2 years following switch from daily oral therapy. consistent with data collected in Phase 3/3b clinical trials. 15,16
- · Virologic failure was infrequent.
- Participants demonstrated high rates of adherence to injection visits.
- Most ISRs were mild to moderate in severity and infrequently led to withdrawal.
- Most participants preferred CAB + RPV LA at Month 24, primarily due to the higher convenience of Q2M injections vs. oral therapy and having fewer concerns about adherence.
- Additionally, the increase in treatment satisfaction for participants remaining on CAB + RPV LA was deemed to be clinically important.

Acknowledgments: We thank everyone who has contributed to the success of the study; all study participants, investigators and the staff of the CARLOS study centers: Infektiologisches Zentrum Steglitz/Berlin; Klinikum Osnabrueck; MVZ am Isartor/Munich; MVZ München am Goetheplatz/Munich: Novopraxis/Berlin: Praxis an der Kulturbrauerei/Berlin: Praxis am Ebertplatz/Cologne: Praxis CityOst/Berlin: Praxis Cordes/Berlin; Praxis Goldstein/Berlin; Praxis Knechten/Aachen; Praxis Schöneberg/Berlin; Praxis Seidel/Weimar; Praxis UBN/Berlin; prinzmed/Munich; Scholten & Schneeweiß GbR/Cologne; Universitätsklinikum Bonn; ViRo Schillerkiez/Berlin; WIR, Walk In Ruhr/Bochum. CARLOS is sponsored by ViiV Healthcare. Germany, Statistical analysis was provided by MUC Research GmbH; editorial assistance was provided by Poppy Mashilo of Nucleus Global, with funding provided by ViiV Healthcare.

13th IAS Conference on HIV Science; July 13-17, 2025; Kigali, Rwanda

References: 1. U.S. Department of Health and Human Services. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. 2024. Available from: https://clinicalinfo.hiv.gov/sites/default/files/guidelines/document Accessed May 2025, 2. European AIDS Clinical Society, Guidelines Version 12.1, 2024. Available from: https://eacs.sanfordguide.com. Accessed May 2025, 3. Raiesh T, et al. JAMA, 2025;333(7):609-628, 4. Orkin C, et al. N Engl J Med. 2020;382(12):1124-1135, 5. Overton ET, et al. Lancet. 2021;96(10267):1994–2005. **6.** Swindells S, et al. *N Engl J Med.* 2020;382(12):1112–1123. **7.** Ramgopal MN, et al. *Lancet HIV.* 2023;10(9):e566–e577. **8.** Kiyo C, et al. *Lancet HIV.* 2023;10(9):e Available from: https://www.ema.europa.eu/en/documents/product-information_en.pdf. Accessed May 2025. 12. Cutrell AG, et al. AIDS. 2021;35(9):1333–1342. 13. Borch J, et al. HIV Glasgow 2022 (Presentation O43). 14. Sedaghat AR. Otolaryngol Head Neck Surg. 2019;161(4):551–560. 15. Orkin C, et al. Lancet HIV. 2021;8(4):e185–e196. 16. Jaeger H, et al. Lancet HIV. 2021;8(11):e679–e689.

Disclaimer This content was acquired following an unsolicited medical information enquiry by a healthcare professional. Always consult the product information for your country, before prescribing a ViiV medicine. ViiV does not recommend the use of our medicines outside the terms of their license. In some cases, the scientific Information requested and downloaded may relate to the use of our medicine(s) outside of their license.